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This three-part article series 

has described a quality-by-

design (QbD) methodology 

for chromatographic 

method development 

work. In Part I, the authors 

examined the current 

approaches to column 

and solvent screening in 

terms of experimental 

design space coverage 

— a key element of the 

liquid chromatography 

(LC) process knowledge 

required for establishing 

the final design space. Part 

II of the series described 

novel data treatments 

to both accelerate and 

bring quantitation to 

the column and solvent 

screening work. This third 

and final installment 

of the series extends 

the new QbD-based 

methodology to the formal 

method development 

phase. Here, design of 

experiment methods are 

used in combination with 

Quality-by-design (QbD) is a 
methodology gaining wide-
spread acceptance in the phar-

maceutical industry. A core tenet of 
this methodology is the idea of estab-
lishing the design space of a product or 
process as a primary R&D goal. Many 
articles have been published recently 
describing the successful application of 
QbD to process development. By rec-
ognizing a liquid chromatography (LC) 
instrument as a small process-in-a-box, 
one can readily see the applicability of 
QbD to LC method development.

ICH Q8 defines a design space as 
“The multidimensional combination 
and interaction of input variables 
(for example, material attributes) and 
process parameters that have been 
demonstrated to provide assurance of 
quality”(1). Two key elements of this 
definition warrant brief discussion. 
First, the phrase “multidimensional 
combination and interaction” clearly 
indicates that the “design space” 
should be characterized by studying 
input variables and process parameters 
in combination, and not by a univari-
ate (one-factor-at-a-time) approach. 
Second, the term “design space” is 
one of many terms used in the design 
of experiments (DOE) lexicon to 
denote the geometric space, or region, 
which can be sampled statistically by 
a formal experimental design. Other 
terms in common use include design 
region, factor space, and “joint fac-
tor space.”(2). However, the phrase 
demonstrated to provide assurance of 
quality clearly defines this design space 
as a subset region of an experimen-
tally explored design region in which 
performance is acceptable. Therefore, 
in this article, the term experimental 

design region refers to the geometric 
region described by the ranges of LC 
parameters studied in combination by 
a formal experimental design. When 
the experimental results are of reason-
able quality, DOE can translate the 
experimental design region into a 
“knowledge space” within which all 
important instrument parameters are 
identified, and their effects on method 
performance are fully characterized. As 
DOE is fundamentally a model-build-
ing exercise, this translation is accom-
plished by deriving equations (models) 
from the experimental results. Given 
that the equations have sufficient 
accuracy and precision, they then can 
be used to directly establish the ICH-
defined design space. The instrument 
parameter settings in the final LC 
method, thus, represent a point within 
the design space. The design space 
itself represents a region surrounding 
the final method bounded by edges 
of failure; parameter setting combina-
tions inside the bounds have acceptable 
method performance, parameter set-
ting combinations outside the bounds 
do not.

QbD for Formal Method  
Development
Many pharmaceutical companies have 
adopted a two-phased approach to LC 
method development work in which 
column–solvent screening experiments 
are done as Phase 1, followed by formal 
method development as Phase 2. Part 
II of this article series described a QbD 
methodology for Phase 1 in which 
formal experimental design is used to 
study column type, organic solvent 
type, and pH. It also introduced the 
use of novel Trend Responses to over-
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come knowledge limitations common 
to column–solvent screening stud-
ies due to the compound coelution 
and changes in compound elution 
order across experiment trials (peak 
exchange). Figure 1 presents a QbD-
based workflow proposed for Phase 2 
experiments by which an LC process 
design space can be established. As for 
the column–solvent screening work, a 
formal experimental design approach is 
used in Phase 2.

Defining the experimental design 
region: The first step in the QbD 
workflow is defining the experimental 
region. In LC method development, 
knowledge of the target compound 
properties usually determines which 
instrument parameters are selected 
for study (Step 1.a). A mistake com-
monly made in Step 1.b is setting 
small study ranges analogous to those 
typically used in method validation 
for robustness experiments. In such 
an experiment, each variable’s range is 
normally set to the expected ± 3.0*σ* 
variation limits about its setpoint, as a 
robustness experiment’s purpose is to 
test the “null” hypothesis — that the 
factor has no statistically significant 
effect on method performance across 
its expected noise range. However, 
even critical parameters will have 
inherently small effects across their 
noise ranges (low signal-to-noise ratio 
[S/N]), which makes a robustness 
experimental approach inappropriate to 
the QbD method development goal of 
deriving precise and accurate models of 
study variable effects. Therefore, as a 
rule of thumb, the experiment variable 
ranges should be set to a minimum of 
10 times their expected noise ranges, 
and unless restricted by engineering 
constraints, should never be set to less 
than five times these ranges.

Table I presents a template that 
defines a proposed experimental region 
for the formal method development 
phase. As for the Phase 1 template pre-
viously presented, this template can be 
modified as needed to accommodate 
the specific LC instrument system and 
compounds that must be resolved.

Developing the knowledge space: 
Step 2 in the QbD Workflow first 
involves generating and carrying out a 
statistical experimental design. Select-

Figure 1: QbD methodology for Phase 2.

Figure 2: Plackett–Burman design for N = 4.

Table i: phase 2 experiment template 

Experiment Variable Traditional HPLC UPLC

Temperature (°C) Constant at 30 ° 50–80

Pump Flow Rate (mL/min) 0.7–1.5 0.1–0.5

Gradient Slope (% Organic) 
— Vary Final Conditions

Initial%:            5.0 
Final % Range: 60.0–95.0

Initial%:            5.0 
Final % Range: 60.0–95.0
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ing the statistical experimental design 
is a critically important step; there is a 
wide variety of statistical design types, 
each of which has specific information 
properties and is intended to support 
a specific analysis model. In practical 
terms, this means that not all statisti-
cal designs have the same ability to 
identify which variables are important 
and quantify variable effects. Unfor-
tunately, it is observed very commonly 
that an experimenter will select a 
design based upon its “size” — the 
required number of experiment trials 
for a given number of study variables, 
and neglect the underlying model form 
when analyzing the data. A typical 
example is the widespread use of highly 
fractionated factorial designs such as 
the popular Plackett–Burman designs. 
These designs are two-level fractional 
factorial designs for studying N - 1 
variables in N runs, where N is a mul-
tiple of four. The simplest case is the N 
= 4 design for studying three variables 
at two experimental levels each in four 
trials. Figure 2 illustrates this design 
for three variables, designated X1, X2, 
and X3, at standardized low (−) and 
high (+) levels. The figure shows the 
low and high level settings of the three 
variables in the four trials, and also the 
derived level settings of the two-way 
effects terms — obtained by multiply-
ing the level settings of the parent 
main effects terms in each row. These 
level settings are used in the data 
analysis to relate the variable’s linear 
additive (main) effects and two-way 
(pairwise interaction) effects, respec-
tively, to observed changes in a given 
result across the experiment trials. A 
simple examination of the level-setting 
patterns for these terms reveals the per-
fect correlation of the interaction terms 
with the main effects terms across the 
experiment trials. This correlation pat-
tern is deliberate in Plackett–Burman 
designs, which are intended primarily 
for screening large numbers of vari-
ables to determine if the variables have 
any significant effects that warrant 
further study. Deliberate correlation 
such as this is termed “effects aliasing.” 
These designs support a linear model, 
and the aliasing must be considered in 
the interpretation of results, because it 
cannot be eliminated by data analysis. 

Figure 4: Region of acceptable mean performance.

Figure 3: Prediction of mean performance.

Table ii: example phase ii experiment

Experiment Variable Range or Levels

Pump Flow Rate (mL/min) 0.1–0.5

pH 6.6, 7.1

Gradient Time (min) 5–11

Gradient Slope (%Organic) — Vary Initial 
Conditions

Initial %: 50–80 
Final %: 95.0

This means that any observed effect 
that the linear model ascribes to, for 
example, X1, might be due in whole 
or in part to the aliased X2*X3 term 
— the interaction of X2 with X3. 
More experiment trials are required to 

break the aliasing and make the cor-
rect assignments of effects. It should 
be clear from this discussion that care 
must be taken when selecting the 
statistical experiment design, and the 
information properties of the design 
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must not be forgotten when analyzing 
data and reporting results.

Careful execution of Steps 1–2.a 
will correctly stage the experiment 
to provide the scientific knowledge 
required to establish accurately the 
design space for the analytical method 
in a manner consistent with current 
ICH guidances: “The information 
and knowledge gained from phar-
maceutical development studies and 
manufacturing experience provide 
scientific understanding to support 
the establishment of the design space, 
specifications, and manufacturing 
controls” (1). To illustrate this, we will 
describe a Phase 2 experiment carried 
out according to the QbD approach 
using the sample mix from the Phase 
1 “proof-of-technology” experiment 
described in part two of this article 
series. The sample mix used in that 
experiment contained 14 compounds: 
two active pharmaceutical ingredients 
(APIs), a minimum of nine impurities 
that are related structurally to the APIs 
(same parent ion), two degradants, and 
one process impurity. The LC instru-
ment platform, which will again be 
used for this experiment, is a Waters 
ACUITY UPLC system (Milford, 
Massachusetts). Based upon the Phase 
1 experiment results, the experimental 
design region was defined by modify-
ing the Phase 2 experiment template 
in two ways. First, pH and gradient 
time were shown to be critical effectors 
with optimum settings of at 6.8 and 
9.5 min, respectively. They were there-
fore again studied in this experiment 
to further characterize their effects 
and establish correct operating ranges. 
Second, because shallower gradients 
with high end points were indicated to 
perform better, the gradient slope was 
studied by varying the initial condi-
tions with a constant end point. A sta-
tistical experimental design was then 
generated that would support using the 
full cubic model in the analysis of the 
results.

Once the experiment was run, two 
unique trend responses described in 
Part II were derived directly from the 
chromatogram results (responses). 
These were: “No. of Peaks” — the 
number of integrated peaks in each 

chromatogram, and “No. of Peaks ⩾ 
1.50 — USP Resolution” — the num-
ber of integrated peaks which are base-
line resolved in each chromatogram. In 
addition, peak tracking was done on 
the two APIs and the two impurities 
from which they are difficult to sepa-
rate. Peak tracking was facilitated by 
spiking the sample mix such that API 
1 was at a significantly higher amount 
than API 2, which enabled the two 
related compounds to be distinguished 
easily in the experiment chromato-
grams.

Analysis of the experiment data sets 
yielded a prediction model for each 

response that identified the important 
effectors and characterized their effects 
on the response. Figure 3 illustrates 
how such a model can be used to pre-
dict a response. The figure shows the 
general form of a partial quadratic 
model that predicts the resolution of 

Figure 5: Global region of acceptability.

Figure 6: Mean performance versus robustness.

Table iii: Numerical optimizer result

Study Variable 
Name

Optimizer Answer 
Level Setting

Pump Flow Rate 0.5

Gradient Time 8.3

Initial % Organic 55

pH 7.1
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a critical peak pair (Rs) as a function 
of two experiment parameters, in this 
case, the pump flow rate (variable X1) 
and the initial percent organic of the 
gradient method (variable X2).

From Figure 3, one could anticipate 
that by iteratively entering level-setting 
combinations of the two study factors 
and evaluating the predicted results, 
one could identify the best method 
obtainable within the variable ranges 
in terms of the resolution response. 
One could then plot these iteratively 
predicted responses in terms of rela-
tive acceptability. For example, given 
a resolution goal of ⩾ 1.50, one could 
generate a modified contour plot of the 
resolution response in which study fac-
tor combinations corresponding to pre-
dicted resolution responses below 1.50 

are indicated in color, as illustrated in 
Figure 4.

The dark green line in Figure 4 
demarcating the shaded and unshaded 
regions corresponds to level-setting 
combinations that are predicted to 
exactly meet a minimum acceptabil-
ity value of 1.50 for the critical-pair 
resolution response within the variable 
ranges. The demarcation line there-
fore represents the predicted edge of 
failure for this response, as defined in 
the ICH guidance: “The boundary to 
a variable or parameter, beyond which 
the relevant quality attributes or speci-
fication cannot be met” (3). Taken 
together, the prediction model (Figure 
3) and the corresponding contour plot 
(Figure 4) numerically and graphically 
represent the quantitative knowledge 

space obtained from the DOE experi-
ment for the resolution response.

As discussed in part two of this 
column series, the models obtained 
for all responses can be linked to a 
numerical search algorithm to identify 
the overall best-performing study vari-
able settings considering all responses 
simultaneously. In addition, a contour 
plot like the one in Figure 4 can be 
generated for each modeled response, 
and these plots can be overlaid to visu-
alize the global region of acceptability, 
as illustrated in Figure 5. The region 
of acceptability is consistent with the 
ICH definition of a design space from 
a mean performance perspective only.

Establishing the design space: It 
must be understood that each model 
derived from the experiment results 
is a single point predictor of a mean 
response given the input of a level set-
ting for each study factor (that is, a 
candidate method). In other words, for 
a given candidate method, the model 
predicts the mean (arithmetic average) 
of the individual resolution values that 
would be obtained over many injec-
tions. The model does not predict the 
magnitude of the variation in the injec-
tions directly, and so cannot provide 
any knowledge of the relative robust-
ness of the candidate method directly. 
The region of acceptability illustrated 
in Figure 5 is therefore only consistent 
with the ICH definition of a design 
space from a mean performance per-
spective. Because method performance 
varies, methods at or near the edge of 
failure will only perform acceptably on 
average. This means that the edges of 
failure must be moved inside the mean 
performance design space to accommo-
date robustness. This “reduced” design 
space has been referred to as the “pro-
cess operating space” (3). The question 
is then how far inside the mean perfor-
mance design space should the edges of 
failure be located. Moving them in too 
far can be overly restrictive and require 
a level of control that is too costly or 
unavailable, while not moving them in 
far enough increases the risk of unac-
ceptable performance. The next section 
describes in detail how to determine 
the optimum method and the final 
design space in terms of both mean 
performance and robustness without 

Figure 7: Prediction of performance variation.

Figure 8: Critical pair resolution response.
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the need to conduct additional experi-
ments.

Characterizing Method  
Robustness
Integrating quantitative robustness 
metrics into LC method development 
is critically important for the simple 
reason that two candidate methods 
can provide the same mean perfor-
mance but very different robustness. 
This is illustrated in Figure 6 for two 
methods designated A and B. Both 
methods have the same mean perfor-
mance, meaning that on repeated use, 
they have the same average ability to 
separate a critical compound pair. But 
method A performance varies exces-
sively in response to inherent variation 
in critical LC instrument parameters, 
while method B performance does 
not. Unfortunately, it is not possible 
to determine the relative robustness of 
a given candidate method by inspect-
ing a resulting chromatogram, and so 
by simple inspection method A could 
be identified easily as an acceptable 
method.

The lack of accurately characterizing 
robustness in method development is 
a common reason why many methods 
must be redeveloped each time they 
are to be transferred downstream in 
the drug development pipeline to meet 
the stricter performance requirements 
that will be imposed on them. The 
statements reproduced in the following 
express how important this integra-
tion is in the view of the FDA and 
the ICH. Although the goal is stated 
clearly, the guidances do not define 
how to accomplish such a task. The 
new methodology presented in this 
article has been developed in response 
to both the stated need for integrating 
robustness into LC method develop-
ment work and the lack of a defined 
“how to” approach.

FDA Reviewer Guidance (5). 
COMMENTS AND CONCLU-
SIONS

HPL Chromatographic Methods for 
Drug Substance and Drug Product.

Methods should not be validated 
as a one-time situation, but methods 
should be validated and designed by 
the developer or user to ensure rugged-

ness or robustness throughout the life 
of the method.

ICH Q2B (6). X. ROBUSTNESS 
(8)

The evaluation of robustness should 
be considered during the development 
phase and depends upon the type 
of procedure under study. It should 
show the reliability of an analysis 
with respect to deliberate variations in 
method parameters.

To meet the needs of a working ana-
lytical laboratory the new methodology 
was required to meet three important 
requirements:

Be based upon statistically rigorous 
QbD principles.

Integrate quantitative robustness 
metrics without additional experi-
ments.

Maximize the use of automation to 
reduce time, effort, and error.

Figure 10: Final design space, expanded view.

Figure 9: Final design space.
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In meeting these three requirements, 
the new methodology represents 
the automation of a best-practices 
approach in which LC methods can be 
developed rapidly and simultaneously 
optimized for mean chromatographic 
performance and method robustness. 
This new methodology employs Monte 
Carlo simulation, a computational 
technique by which mean performance 
models are used to obtain predictions 
of performance variation. A detailed 
description of Monte Carlo simulation 
is beyond the scope of this paper. For 
purposes of illustration, the technique 
is outlined in the five basic execu-
tion steps defined in the following 
and illustrated in Figure 7 for the two 
study factors previously discussed. It is 
important to note that this approach 
correctly represents a study factor’s 
variation as random, normally distrib-
uted setpoint error, and that the entire 
error distribution of each factor is rep-
resented simultaneously in the robust-
ness computation.

A setpoint variation distribution is 
generated for each study factor using 
a normal (Gaussian) distribution tem-
plate with ±3.0*σ* limits set to the 
±3.0*σ* variation limits expected for 
the factor in normal use.

For example, a given target LC 
system might have expected ±3.0*σ* 
variation limits of ±2.0% about the 
endpoint percent organic defined in a 
gradient method.

A candidate method is selected. The 
method defines the setpoint level set-
ting of each study factor.

For each study factor the setpoint 
variation distribution is centered at 
the setpoint level setting, which, thus 
becomes the effective mean value 
of the distribution, and a very large 
number of level settings — say 10,000 
— are then obtained by randomly 
sampling the variation distribution.

The mean performance model then 
generates 10,000 predicted results 
— one for each of the 10,000 variation 
distribution sampling combinations 

of the study factors. Note that this is 
a correct propagation of error simula-
tion, because all study factor random 
variations are propagated simultane-
ously through the model.

The variation distribution of the 
10,000 predicted results is then char-
acterized, and the ±3.0*σ* variation 
limits are determined.

For a given candidate method, the 
Monte Carlo simulation approach 
provides a quantitative measure of the 

Figure 11: Chromatogram from optimized method.
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variation in a modeled response in the 
form of predicted ±3.0*σ* variation 
values. This is a good starting point; 
what is needed then is an independent 
scale for determining whether the 
magnitude of the predicted variation 
is acceptable. For this, we employ the 
process capability index (Cp) — a sta-
tistical process control (SPC) metric 
widely used to quantify and evaluate 
process output variation in terms of 
critical product quality and perfor-
mance characteristics. Cp is the ratio 
of the process tolerance to its inherent 
variation, and is computed as shown in 
equation 1. Coupling the simulation 
result with the calculated Cp enables 
a direct comparison of the relative 
robustness performance of alternative 
methods ([7).

Note that tolerance limits can be 
used in equation 1 rather than the 
more traditional specification limits, 
because there might or might not be 
absolute specifications for acceptable 
variation in critical method perfor-
mance attributes such as resolution to 
which this calculation will be applied.

In equation 1, USL and LSL are the 
upper and lower specification limits for 
a given response, and the 6*σ* varia-
tion is the amount of the total varia-
tion about the mean result bounded 
by the ±3*σ* variation limits. Cp is 
therefore a scaled measure of inherent 
process variation relative to the toler-
ance width. Figure 8 illustrates the 
Cp calculation elements for the criti-
cal pair resolution response described 
previously given a mean resolution (* 
*) of 2.00 and specification limits of 
±0.50. In classical SPC, a process is 
deemed capable when its measured 
Cp is ⩾1.33. The value of 1.33 means 
that the inherent process variation, as 
defined by the 6*σ* interval limits, is 
equal to 75% of the specification limits 
(4/3 = 1.33). Conversely, a process 
is deemed not capable when its mea-
sured Cp is ⩽1.00, as the value of 1.00 
means that the 6*σ* interval limits are 
located at the specification limits.

The Cp metric can be applied 
directly to each modeled response to 
determine the relative robustness of 
a candidate method in terms of the 
response and evaluate the robustness 
on a standardized acceptability scale. 
However, it is apparent from equa-
tion 1 that the Cp value computed 
for a given candidate method directly 
depends upon the tolerance limits 
defined for the response. One should 
therefore follow the basic rules listed 
in the following when specifying the 
specification limits to be used in the 
Cp calculation.

Specification limits should be 
defined in the units of the response.

Specification limits should be 
defined as a symmetrical delta (±Δ) 
which delineates a relative tolerance 
range and not as absolute USL and 
LSL values.

The ±Δ limits will be applied to dif-
ferent candidate methods to determine 
their relative robustness by computing 
their Cp values. Absolute USL and 
LSL values cannot be used, because the 
mean response will vary across a set of 
candidate methods being evaluated.

The magnitude of the tolerance limit 
delta should be consistent with the per-
formance goals defined for the critical 
response being evaluated.

As an example, a reasonable method 
development goal is to achieve a mean 
resolution of ⩾2.00 for a critical com-
pound pair. Therefore, an appropriate 
tolerance limit delta for this response 
would be ±0.50; this sets the LSL at 
1.50, which corresponds to baseline 
resolution. Note that ever-increasing 
resolutions usually are not desirable, 
because as the peaks move farther 
apart, they also are moving closer to 
other peaks.

The Monte Carlo simulation 
approach is used to obtain a robustness 
Cp value for each method included in 
the DOE experiment for each mod-
eled response. These robustness Cp 
results are then modeled as additional 
response data sets. Recall that the 
mean performance model of a given 
result such as resolution represents the 
combined affects of the study factors 
on the response within the knowledge 
space, and predicts the mean result 
for a given combination of study fac-

tor level settings. Likewise, the cor-
responding robustness Cp model repre-
sents the combined affects of the study 
factors on resolution variation within 
the knowledge space, and so predicts 
the resolution variation obtained for a 
given combination of study factor level 
settings.

Establishing the Final Design 
Space
The mean performance and robustness 
Cp models for the previously described 
responses were linked via numerical 
optimization routines to identify the 
study factor level settings that would 
simultaneously meet mean perfor-
mance and robustness goals for all 
responses. The original optimization 
goals set for the two APIs and their 
problem impurities were a mean reso-
lution (Rs) of ⩾ 2.00 and a Robustness 
Cp of ⩾ 1.33, using tolerance limits 
of ±0.50 for the resolution robustness 
Cp calculations. However, the numeri-
cal optimization results identified that 
the best mean performance obtain-
able within the experimental region 
was Rs ⩾ 1.75 for the APIs with their 
respective problem impurities, and Rs 
⩾ 1.50 for one of the problem impuri-
ties with its nearest eluted neighbor 
impurity. Robustness Cp results were 
therefore re-computed using tighter 
tolerance limits of ±0.25 and ±0.10, 
respectively. Table III lists the “best 
performing method” identified by the 
automated optimizer relative to the 
new goals for peak visualization, base-
line resolution, and method robustness.

Figure 9 illustrates the final design 
space for pump flow rate and initial % 
organic (gradient time = 8.3 min, pH 
= 7.1) as the reduced unshaded region 
bounded by the new narrower edges 
of failure required for the responses. 
Figure 10 is an expanded (zoom in) 
view of this design space generated by 
reducing the graphed variable ranges 
to ranges, which just bracket the new 
edges of failure.

Finally, Figure 11 is the chro-
matogram obtained by analyzing the 
sample using a method in which the 
instrument parameters were set to the 
optimum settings identified by the 
two experiments. As the figure shows, 
all compounds are baseline resolved 
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— a result that was not achieved in 
the prior development effort, which 
involved more traditional approaches 
and was underway for over two 
months. It is especially noteworthy 
that the combined Phase 1 and Phase 
2 experimental work required to 
obtain this final method consisted of 
two multi-factor statistically designed 
experiments, both of which were run 
on the LC system overnight in a fully 
automated (walk-away) mode.

Conclusions
A Phase 1 column–solvent screening 
experiment carried out using the new 
QbD methodology and software capa-
bilities described in this article series 
can identify the correct analytical 
column, pH, and organic solvent type 
to use in the next phase of method 
development. Once these instrument 
parameters are identified, the second 
phase of method development involves 
studying the remaining important 
instrument parameters, again accord-
ing to the new QbD methodology, 
to obtain a method that meets mean 
performance requirements. However, 
in LC method development, the com-
monly used experimental approaches 
to establishing a design space only 
address method mean performance 
— robustness usually is evaluated only 
separately, as part of the method-vali-
dation effort. The novel QbD method-
ology described here combines design 
of experiments methods with Monte 
Carlo simulation to successfully inte-
grate quantitative robustness metrics 
into LC method development. This 
combination enables a rapid and effi-
cient QbD approach to method devel-
opment and optimization consistent 
with regulatory guidances.
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