

Fusion QbD

Fusion Process Development – Non-LC Method Development Formulation & Process R&D

© 2024 S-Matrix Corporation. All Rights Reserved. S-Matrix Corporation www.smatrix.com

Supports All Install Environments (Citrix Ready Certified) **Full 21 CFR Part 11 Compliance Support** Flexible, Automated (1-Click) Design **Full LC Testing Automation Simplifies Handling of Complex Data Integrated Monte Carlo Robustness Full QbD Reporting**

Example Applications

- Tablet Coating Optimization
- Tablet Excipient Formulation and Process Optimization

Example Workflows

- Sample Preparation Method Development
- Dissolution Method Development
- Respiratory Drug Development

- Full 21 CFR Part 11 Compliance Support
- Flexible, Automated (1-Click) Design
- **Full LC Testing Automation**
- **Simplifies Handling of Complex Data**
- **Integrated Monte Carlo Robustness**
- Full QbD Reporting

Supports All Install Environments

Install Environment

Standalone (Workstation)

Network (Enterprise)

Citrix Ready Certified

Fully Qualifiable for GXP Environments*

* – Fusion QbD is operating in the GxP environments of international pharmaceutical companies worldwide.

Supports All Install Environments (Citrix Ready Certified)

Full 21 CFR Part 11 Compliance Support

Flexible, Automated (1-Click) Design

Full LC Testing Automation

Simplifies Handling of Complex Data

Integrated Monte Carlo Robustness

Full QbD Reporting

How Fusion Process Development Assures Compliance

Required Features

Full integration of **all e-record** and **all esignature** features and functions required to support full 21 CFR 11 compliance.

Integrated Project Management System.

Full audit trail, including all data exchanges with the CDS.

Why Compliance is Important!

FDA Statement Regarding Robustness Done During Method Development* -

As long as the **data integrity** associated with the method development work matches what would be done in a formal Validation Robustness effort, then the results are acceptable.

Same Regulatory Expectation for Claims of Formulation and Process Robustness

* – USP Workshop – Enhanced Approaches for Analytical Procedure Lifecycle: An Alternative to Traditional Validation

(Sept. 24-25, 2018)

Full 21 CFR Part 11 Compliance Support

Why Audit Trail is Important!

Flexible Experiment Design – Easy Setup

Combined Mixture-Process Studies

Enables you to characterize interactions between the two!

Automated DOE Wizard Selects and Generates the Right Design for you!

Name: Administrator Company: S-Matrix Corporation Project: Project 1 Date: May 10, 2011 12:10:33 PM PDT [GMT-07:00]	S-Matrix.
--	-----------

Experiment Design - Pan Coater Process Optimization

Experiment Design Matrix

Run No.	Block No.	Atomizing Air Pressure (psi)	Pattern Air Pressure (psi)	Spray Rate (gm/min)	Gun-to-Bed Distance (inches)
1	1	30.0	55.0	82.5	7.0
2	1	30.0	27.5	82.5	10.0
3	1	50.0	0.0	125.0	10.0
4	1	10.0	0.0	40.0	10.0
5	1	10.0	55.0	125.0	10.0
6	1	10.0	55.0	40.0	4.0
7	1	30.0	27.5	82.5	4.0
8	1	30.0	0.0	82.5	7.0
9	1	50.0	55.0	40.0	10.0
10	1	50.0	0.0	40.0	4.0
11	1	30.0	27.5	82.5	7.0
12	1	10.0	55.0	40.0	10.0
13	1	10.0	0.0	125.0	4.0
14	1	50.0	55.0	40.0	4.0
15	1	10.0	0.0	40.0	4.0
16	1	10.0	0.0	125.0	10.0
17	1	50.0	55.0	125.0	10.0
18	1	50.0	27.5	82.5	7.0
19	1	50.0	0.0	40.0	10.0
20	1	30.0	27.5	82.5	7.0

Automated Design Logic Accounts for:

- Stage of the Work (Screening or Optimization)
- Number of Variables
- Types of Variables

 Continuous Numeric
 Discrete Numeric
 # of defined levels
 Categorical (Non-numeric)
 # of defined levels

- DOE Expert Users
- Users Following an SOP

Flexible Experiment Design

Can Accept Designs and Results from Other Software

Supports All Install Environments (Citrix Ready Certified)

Full 21 CFR Part 11 Compliance Support

Flexible, Automated (1-Click) Design

Full LC Testing Automation

Simplifies Handling of Complex Data

Integrated Monte Carlo Robustness

Full QbD Reporting

Standards Protocol Setup Wizard

Export Options	Export	
Select Export Type © Export To Chromatography Data System © Export to File OK Cancel	Bracketing Strategy Bracketing - Overlap Bracketing Settings No. of Standards per Bracket 2 No. of Injections within Brackets 5 Bracket 2 Bracketing Scheme - first two brackets 5 Bracket 1.a 1.alt - 0.00 1.blt - 0.00 2.alt - 0.00 2.clt - 0.0	<u>Clear</u> <u>R</u> eset
	3.alt - 0.00 3.blt - 0.00 3.clt - 0.00 4.alt - 0.00 4.blt - 0.00 4.clt - 0.00 5td - 1.c	Select your standards protocol – Standard injections are
		automatically included in the
		testing sequence exported to
	<< <u>B</u> ack <u>N</u> ext>>	the CDS.

Export Testing Design Sequences to the CDS

Fusion QbD automatically builds testing sequences in your CDS which can include your standard injection protocol for all test data which will be generated by LC testing.

File	ext /	View		Matrix - MD	Demo\LC Tu	torial - Sa	mple Workup as S	ystem/Administrator	Sample Se	t Method Edit	or						
F	2		3* 3	<u>*8</u> 73	XBB	Apply Tab	le Preferences Sarr	ple Set Method		•							
S	Vial	lnj Vol (uL)	# of Injs	Label	SampleName	Level	Function	Method Set / Report Method	Label Reference	Processing	Run Time (Minutes)	Data Start (Minutes)	Next Inj. Delay (Minutes)	Column Position	Auto Additions	SampleWeight	Di
1							Condition Column				6.70	0.00	0.00	No Change			
2							Condition Column	Text Mix pH 001_017			0.10	0.00	0.00	No Change			
3							Equilibrate	Text Mix pH 001_017			3.00	0.00	7.95	No Change			
4	1	2.0	1	Unk-000-000	Blank - 1		Inject Samples	Text Mix pH 001_017		Normal	10.50	0.00	1.50			1.00000	1.0
5							Condition Column	Text Mix pH 001_001			0.10	0.00	0.00	No Change			
6							Equilibrate	Text Mix pH 001_001			3.00	0.00	0.00	No Change			
7	2	2.0	1	Unk-001-001	1.a.1.a		Inject Samples	Text Mix pH 001_001		Normal	10.50	0.00	1.50			1.00000	1.0
8							Condition Column	Text Mix pH 001_002			0.10	0.00	0.00	No Change			
9							Equilibrate	Text Mix pH 001_002			3.00	0.00	0.00	No Change			
10	2	2.0	1	Unk-001-002	2.a.1.a		Inject Samples	Text Mix pH 001_002		Normal	10.50	0.00	1.50			1.00000	1.0
11							Condition Column				6.70	0.00	0.00	No Change			
12							Condition Column	Text Mix pH 001_003			0.10	0.00	0.00	No Change			
13							Equilibrate	Text Mix pH 001_003			3.00	0.00	0.00	No Change			
14	2	2.0	1	Unk-001-003	3.a.1.a		Inject Samples	Text Mix pH 001_003		Normal	10.50	0.00	1.50			1.00000	1.0
15							Condition Column				6.70	0.00	0.00	No Change			
16							Condition Column	Text Mix pH 001_004			0.10	0.00	0.00	No Change			
17							Equilibrate	Text Mix pH 001_004			3.00	0.00	0.00	No Change			
18	2	2.0	1	Unk-001-004	4.a.1.a		Inject Samples	Text Mix pH 001_004		Normal	10.50	0.00	1.50			1.00000	1.0
19							Condition Column	Text Mix pH 001_005			0.10	0.00	0.00	No Change			
20							Equilibrate	Text Mix pH 001_005			3.00	0.00	0.00	No Change			
21	2	2.0	1	Unk-001-005	5.a.1.a		Inject Samples	Text Mix pH 001_005		Normal	10.50	0.00	1.50			1.00000	1.0
22				_		_	Condition Column				6.70	0.00	0.00	No Change			
23							Condition Column	Text Mix pH 001_006			0.10	0.00	0.00	No Change			

Automated, Audited Data Exchange Preserves Data Integrity

Import All Required Results Data from CDS

		1	1.2		I.a. i	
Find Filter Reset	Result Set Name	ResultSetID	Date	DI LEOT	Sample	Set
Projects	RD2 Uptimization	1009	2/19/2019 7:23:	52 PM EST	HD2 Up	timizal
Customers						
S-Matrix	<					>
B ADL		Select Proces	sed Channel			
B FIT	Eatab Calested Reput Cate					
# 5 FMD Tutorial - 9_9_0	reich selected nesult sets	PUA Chi 22	onm@4.8nm, I me offset by U	1.020 mins.		
E FMV-A L R	trat statements as					_
Internal Development	Result(s) for Import					
Adilent DAD Test	Sample	BesultD	Date	Tune	Channel ID	
E EMD New Tutorial	1	1422	2/19/2019 7:56:43 PM	1000	1007	
	io	1378	2/19/2019 7:43:08 PM	ĩc	1169	
B Forced Degradation Study 1	11	1380	2/19/2019 7:44:13 PM	LC	1178	
PT Dev - Non-Ionizing Peaks	12	1382	2/19/2019 7:44:53 PM	LC	1187	
RD1 Screening Confirmation	13	1384	2/19/2019 7:45:20 PM	LC	1196	
BD1 New-1 Traditional-Acquity	14	1386	2/19/2019 7:45:47 PM	LC	1205	
D PD2 Large Date Set	15	1388	2/19/2019 7:46:04 PM	LC	1214	
RD2_Large_Data_Set	16	1225	2/19/2019 7:24:36 PM	LC	1223	
Replicate Study - PeakTracker	17	1390	2/19/2019 7:47:44 PM	LC	1232	
RD1 - Demo Screening Expt	18	1392	2/19/2019 7:48:06 PM	LC	1241	
RD2 - Demo Optimization Expt	19	1394	2/19/2019 7:48:42 PM	LC	1250	
Test	2	1364	2/19/2019 7:36:34 PM	LC	1097	
	20	1396	2/19/2019 7:49:11 PM	LC	1259	
IIp of the week	21	1398	2/19/2019 7:49:28 PM	LL	1268	
	22	1400	2/19/2019 7:50:01 PM	10	1200	
	23	1402	2/19/2019 7:50:33 PM	10	1200	
	24	1404	2/19/2019 7:51:49 PM	10	1204	
	26	1408	2/19/2019 7:52:15 PM	IC .	1313	
s (logged in as 'Owner')	27	1410	2/19/2019 7:52:46 PM	LC	1322	
	28	1412	2/19/2019 7:53:02 PM	LC	1331	~
•	<			0.775	20.25	>
						1

Import All Required Results Data from CDS

Automated, Audited Data Exchange Preserves Data Integrity

Supports All Install Environments (Citrix Ready Certified)

Full 21 CFR Part 11 Compliance Support

Flexible, Automated (1-Click) Design

Full LC Testing Automation

Simplifies Handling of Complex Data

Integrated Monte Carlo Robustness

Full QbD Reporting

Simple Data Entry – One Test Result Per Run

🕼 Fusion Product Development - GS-606967discreet_variable	e_24May12_DP - 962_153.sma	2	
<u>F</u> ile <u>E</u> dit <u>M</u> odule <u>T</u> ools <u>W</u> indow <u>H</u> elp			
🗅 📝 😂 🔛 🌉 📮 🎒 🃰 🥍 Edit Run No. Labels	🛲 Matrix Master 🛛 🖆 Expor	🟋 Create/Edit Response Data	🕈 Create Testing Design 🔞
	Create/Edit Response Data Response Name Example Response	Response Units	v Lower Limit v Upper Limit 0 <= Response <= 100
Responses consisting of	Run No. Example Response 1 1 2 2		Add following to empty cells:
only one measurement	3 3 4 4 5 5 6 6		
per run (no test repeats)	7 7 8 8 9 9 10 10		
can be entered directly.	11 11 12 12 13 13 14 14 15		
	15 15 16 16 17 17 18 18 19 19 20 20 21 21 22 22		T
	Validation Status: Your settings are vali	d	<u>^</u> •
All Pights Pessen od		<u>N</u> ew <u>D</u> elete	OK Close Apply 🥝

S-Matrix.

Simple Data Entry – One Test Result Per Run

🐺 Fusion Product Development - Temporary File.smae

File Edit Activity Tools Window Help

esign of Experiments					1			
─	Run N	Io. Starch	Lactose	MCC	C_Force	Example Response		
- • Design Reports	1 1	11.5	2	11.5	20.35		1	
ata Entry / Analysis	2 2	2	11.5	11.5	15.12		1	
Tata Entry	3 3	2	21	2	15.12			Place
- • Data Analysis	4 4	2	2	21	20.35			for
estAnswer Searches	5 5	2	11.5	11.5	20.35			101
- • Best Overall Answer	6 6	5.17	14.67	5.16	17.73			Dat
- Acceptable Performance Region	7 7	2	2	21	15.12			
Point Predictions	8 8	2	2	21	9.88			
isualization Graphics	9 9	21	2	2	9.88			
 Single Response Series 	10 10	11.5	11.5	2	15.12			
Multiple Response Series	11 11	21	2	2	9.88			
eporting Toolkit	12 12	5.17	5.17	14.66	12.5			
- • Fusion Reporter	13 13	21	2	2	15.12			
- • Audit Log Reporter	14 14	14.67	5.17	5.16	12.5			
	15 15	2	21	2	9.88			
	16 16	21	2	2	20.35			
	17 17	11.5	11.5	2	20.35			
	18 18	2	11.5	11.5	9.88			
	19 19	8.33	8.33	8.34	15.12			
	20 20	2	21	2	20.35			
	21 21	2	21	2	9.88			
	22 22	8.33	8.33	8.34	15.12			
	23 23	11.5	2	11.5	15.12			
	24 24	2	2	21	9.88			
	25 25	5.17	5.17	14.66	17.73			
	26 26	11.5	2	11.5	9.88			
	27 27	14.67	5.17	5.16	17.73			
	28 28	11.5	11.5	2	9.88			

Placeholder for Direct Data Entry

Response Data Handler[™] Wizards

🕼 Fusion Product Development - Training Example 1 - Tablet Coater Optimization - Analysis.smae	CONTRACTOR OF THE OWNER.
<u>F</u> ile <u>E</u> dit <u>M</u> odule <u>T</u> ools <u>Window H</u> elp	
🗅 🗊 😂 🔚 📕 🎒 🔚 🕂 Create Testing Design 🗧 Delete Testing Design 🔮 Export 🕂 Create Re	sponse 🚿 Edit Response 🐺 Delete Response 👫 Response Reductions 🥝
Design of Experiments • Create a Design • Design Reports Data Entry / Analysis	Create Response Upper Limit <= Response <=
Create Testing Design Name Testing Design Type Testing Design (3) Descriptive Statistics	
Descriptive Statistics Time Series Standard LC Inhaler Testing	All Raw Test Results Data
	from All Platforms Entered,
Reference Standards Replication Scheme Reference Standard Runs 0 ÷ Apply Replication Scheme to control to co	Managed, Converted to
No. of lest Repeats per Preparation	Modelable Data, and Audited
	in One Fusion QbD
The settings are valid.	Experiment Workbook File.

Response Data Handler[™] Wizards

U.S. Patents No. 8,209,149 and 8,560,276

Handle Complex Data Simply and Easily!

Testing Design Setup Modes

• Descriptive Statistics

Multiple test results per run.

• Time Series

Testing at multiple time points per run.

• Standard LC

Testing at multiple time points per run.

• Inhaler Testing

Respiratory drug test results.

Create Testin	g Design			×
	Testing Design Name Testing Design	(3)	Testing Design Type Descriptive Statistics	
			Time Series Standard LC Inhaler Testing	
	Reference Standards Reference Standard Runs	Repli No.	No. of Preparation Repeats 1 -	
The settings a	are valid.			
			Back Finish	1 Cancel

Descriptive Statistics Testing – Multiple Test Repeats per Run

🕌 Create Testing Design 🛛 🕹	
Testing Design Name Testing Design Type Testing Design (3)	
	Example Protocol –
	Test six (6) tablets for physical properties:
Reference Standards Reference Standard Runs O + Apply Replication Scheme No. of Preparation Repeats Image: No. of Test Repeats per Preparation Image: Optimized Scheme	HardnessFriability
	• Gloss
	•
The settings are valid.	
Back Finish Cancel	

Descriptive Statistics – Testing Template

Descriptive Statistics – Automated Response Generation

.

•

۲

•

S-Matrix

Descriptive Statistics – Automated Response Generation

🐺 Fusion Product Development - Tablet Formulation and Process Optimization - New Analysis - 990.smae

Image: Comparise the second	Automatically
Design of Experiments - • Create a Design Run No. Starch Lactose MCC C_Force Friability	Automatically
Create a Design Run No. Starch Lactose MCC C_Force Friability	Automatically
	Automatically
→ Design Reports 1 1 11.5 2 11.5 20.35 0.28	Automatically
Data Entry / Analysis 2 2 2 11.5 11.5 15.12 1.02	Automatically
Bata Entry 3 3 2 21 2 15.12 0.75	5
 Data Analysis 4 4 4 2 2 2 1 20.35 0.38 	
BestAnswer Searches 5 5 2 11.5 11.5 20.35 0.37	Computes your
- • Best Overall Answer 6 6 5.17 14.67 5.16 17.73 0.49	Computes your
- Acceptable Performance Region 7 7 2 2 2 15.12 0.95	
Point Predictions 8 8 2 2 2 1 9.88 2.44	Salastad Poculta
Visualization Graphics 9 9 21 2 2 9.88 1.48	Selected Results
- • Single Response Series 10 10 11.5 11.5 2 15.12 0.65	
Multiple Response Series <u>11 11 21 2 9.88 1.54 </u>	and Transform
Reporting Toolkit 12 12 5.17 5.17 14.66 12.5 1.33	and transfers
- • Fusion Reporter 13 13 21 2 2 15.12 0.56	
Audit Log Reporter	them to the Main
	them to the Main
	Grid for instant
<u>13</u> 13 0.33 0.34 13.12 0.73	
20 20 2 21 2 20.33 0.34	
22 22 833 833 834 1512 0.75	Analysis
	5
24 24 2 2 21 9.88 2.44	
25 25 5.17 5.17 14.66 17.73 0.53	
26 26 11.5 2 11.5 9.88 1.94	
27 27 14.67 5.17 5.16 17.73 0.41	
28 28 11.5 11.5 2 9.88 1.55	

S-Matrix, Time Series – Multiple Time Point Tests per Run

🕌 Create Testing Design					×					
Testing Design Name		Testing Design Type								
Testing Design	(3)	Time Series	~							
		Descriptive Statistics								
		Time Series								
Reference Standards	Reference Standards Replication Schem									
	No. of F	Inhaler Testing								
Reference Standard Runs 1	No. of Test Repe	ats per Preparation	1 🜩							
Apply Replication Scheme	* - Use this settin	ng for the number of p	reparation repeats.							
	For example:	aumhar of userals a								
	Dissolution – number of vessels per run. Synthesis – number of reaction repeats per run.									
	0,1101000		peak per ram							
Sampling Rate										
Uniform Variable			7.08	+ .0						
0.1111		Measurement	Time Point (Minutes)							
Uniform		1	0.0							
No. of Measurements 3 ~	per Hour 🗸	2	20.0							
		3	40.0							
Total Time Period 🛛 8 🗸 🗸	Hours	4	60.0							
		5	80.0							
Start time at 0	Update	6	100.0							
		7	120.0							
		8	140.0							
		9	160.0							
		10	180.0							
		11	200.0							
		12	220.0							
		14	240.0							
		15	280.0							
				×						
The settings are valid.										
۱ <u>۲</u>										
			Back Finish		Cancel					

E.g., **Dissolution Testing**

Time Series – Instant Testing Protocol

Supports:

- Uniform or variable time-point testing protocols
- Multiple sample preparation repeats
- Multiple test repeats at each time point
- Internal test standard data

Time Series – Testing Template

Re-usable Testing Design Template

🐺 Fusion Product Development - Fusio	Fusion Product Development - Fusion Product Development Tutorial - Part 2 - 990 SR2b.smae – 🗗														
<u>File Edit Activity Tools Window</u>	Help														
🗅 🔂 🖻 🖫 🕼 📕 🎒 🔳	Create Testing Design	n 🗕 Delete	Testing Design	n 📑 Create Re	sponse 🚊 Ex	port 🧕 Impoi	rt Responses ()							
Design of Experiments • Create a Design • Design Reports Data Entry / Analysis	Response Name None Selected	Response Name Response Units Lower Limit Upper Limit Testing Design Type None Selected •													
Data Entry Data Analysis Sest Answer Searches Best Overall Answer Acceptable Performance Region Point Predictions	A Run No. 1 1.a 2 1.b 3 1.c 4 2.a	B t - 0.00	C t - 60.00	D t - 120.00	E t - 180.00	F t - 240.00	G t - 300.00	H t - 360.00	l t - 420.00	J t - 480.00	K t - 540.00	L t - 600.00	M t - 660.00	N t - 720.00	
• Sont Predictions isualization Graphics • Single Response Series • Multiple Response Series Reporting Toolkit • Fusion Reporter • Audit Log Reporter	5 2b 6 2c 7 3a 8 3b 9 3c 10 4a 11 4b				TI	The template is automatically replicated to									
support CDS auto-import of all you							ur de	esired	k						
	18 6.c 19 7.a					ounc			mpe		.	1	1		
	20 /b 21 7.c 22 8.a 23 8.b														
	24 8.C														

S-Matrix, Time Series – Multiple Time Point Tests per Run

🐺 Fusion Product Development - Fusion Product Development Tutorial - Part 2 - 990 SR2b.smae

File Edit Activity Tools Window Help

D 🖻 🖻 🗟 🕲 🖡 🎒 🖶	Creat	e Testing Design	🗕 🗕 Delete T	esting Design	👫 Create Res	ponse 🚿 Edi	t Response 🛛 🗮	Delete Respons	e 👫 Respons	e Reductions	🛋 Export 🧕	Import Respor	nses 🕜			
Design of Experiments	Dave	ana Nama			Deeper	of all of		imit		ulimit Teeti						
 Oreate a Design 	- Nesp	Donse Name			- I I	se onics	Lower		i oppe		Carico	Man Task	in a Danian I			
└─	JAPI	 % Released 			■ ⁴		őő	<= Respon	se<=	Time	Selles	View Test	ing Design			
Data Entry / Analysis	_					-	-									_
Data Entry		A Bun No	+-0.00	C t - 60.00	t 120.00	E + . 180.00	F + . 240.00	G + 300.00	H + , 360.00	+ 420.00	J	K	t - 600.00	t - 660.00	N + 720.00	-
└─ ● Data Analysis		1.a	0.00	13.40	21.35	29.55	35.50	41.45	46.50	51.50	55 55	59.35	62.50	65.60	68.45	
BestAnswer Searches		1.6	0.00	13.60	21.55	29.65	35.45	41.45	46.45	51.65	55.60	59.60	62.55	65.45	68.55	
Oest Overall Answer	3	1.c	0.00	13.50	21.60	29.30	35.55	41.60	46.55	51.35	55.35	59.55	62.45	65.45	68.50	1
Acceptable Performance Region Acceptable Performance Region	4	2.a	0.00	12.20	24.65	36.70	45.95	53.65	60.65	65.55	71.00	75.55	79.50	84.00	87.60	1
Visualization Graphics	5	2.b	0.00	12.15	24.80	36.35	46.25	53.35	60.50	65.45	70.80	75.40	79.80	84.05	87.60	
Single Response Series	6	2.c	0.00	12.25	25.25	36.45	46.10	53.50	60.35	65.50	70.90	75.25	79.50	83.95	87.30	
Multiple Response Series	7	3.a	0.00	8.60	10.55	14.45	17.25	21.65	25.05	28.60	32.75	36.35	40.40	43.95	46.75	
Reporting Toolkit	8	3.b	0.00	8.45	10.10	14.20	17.05	21.80	25.00	28.75	32.70	36.35	40.30	44.20	46.40	
- • Fusion Reporter	9	3.c	0.00	8.45	10.55	14.25	17.30	21.95	25.25	28.75	32.65	36.50	40.50	43.85	46.65	
Audit Log Reporter	10	4.8	0.00	11.50	21.05	30.70									/9.35	
	11	4.D	0.00	11.40	21.15	30.30	_					-			79.55	
	12	4.C	0.00	10.95	21.10	30.50	- Δι	Itoma	atical	lv Ge	nera	ites A	vera	Ar	75.30	
	14	5.b	0.00	10.55	21.30	31.00	/ \'		ancai				wora	yc –	81.25	
	15	50	0.00	10.90	21 30	30.95									81 25	
	•											<i>c</i>	\ r			•
		A	В	С	D	E		esnor	nse (Curve	es (Pr	ofiles	s) fror	n	N	-
		Run No.	t - 0.00	t - 60.00	t - 120.00	t - 180.00		oopor) 0	011100	,	••	20.00	
	1	1	0.00	13.50	21.5	0 29.	50								68.	.50
	2	2	0.00	12.20	24.9	0 36.	50		. —						87.	.50
	3	3	0.00	8.50	10.4	0 14.	30 In	dividi	Jal le	est R	epea	ts tor	r eacr	ז Rur	46.	.60
	4	4	0.00	11.40	21.1	0 30.	50				opou		0401		79.	.40
	5	5	0.00	10.90	21.5	0 31.	00								81.	.30
	6	b 7	0.00	9.10	12.5	0 17.	30					(- -	52.	.40
	+÷	(9	0.00	12.40	20.1	0 36.		or exa	amble	e. res	Suits 1	rom	multik	ble	67.	40
		9	0.00	12.40	21.4	n 31				,			· · · · · · · · · · · · · · · · · · ·		80.	10
	10	10	0.00	10.30	18.6	0 26									75	00
	11	11	0.00	10.20	20.5	0 29.	90	l	1: - · · ·						82.	.00
	12	12	0.00	11.40	19.9	0 27.	30 O	SSOIU	τion \	/esse	eis.				75.	.40
	13	13	0.00	10.60	17.6	0 25.	20								63.	.60
	14	14	0.00	10.10	17.1	0 25.	00 31.	90 36.9	40.9	30 45.	00 49	.00 53.	.00 56.1	10 60.	10 63.	.10 🗸
	4															•
	Exp	periment Design	Tablet	Physical Property	Tests (1)	Dissolution	Testing (2)									
Beadu																-

o ×

_

S-Matrix, Time Series – Multiple Time Point Tests per Run

Coordinated Response Reductions:

- Handles test repeat data
- Computes average profiles
- Computes f1 & f2 curve fit metrics
- Computes sensitive Weibull curve fit metrics
- Computes additional profile response metrics

Multivariate DOE Study – goal is characterizing all significant effects of the study parameters on all Critical Quality Attributes (CQAs)

Supports All Install Environments (Citrix Ready Certified)

Full 21 CFR Part 11 Compliance Support

Flexible, Automated (1-Click) Design and Analysis

Full LC Testing Automation

Simplifies Handling of Complex Data

Integrated Monte Carlo Robustness

Full QbD Reporting

 \checkmark

S-Matrix QbD Robustness – Regulatory Statements 2012

Monte Carlo Robustness Simulation

"Statistical treatments (e.g. Monte Carlo simulations) can help evaluate the effects of uncertainty."

Points to Consider for Design Space – A Regulatory Perspective, Elaine Morefield, Ph.D., 2012 Annual Meeting, AAPS.

Statistical Robustness Metrics

The FDA has stated that accepted process capability indexes such as $C_p, C_{pk}, C_{pm}, and C_{pkm}$ are also part of the QbD toolset.

US FDA, Quality by Design: Objectives, Benefits, and Challenges, Lawrence X. Yu, Ph.D., 2012 Annual Meeting, AAPS.

3. Process Capability

Process capability refers to the performance of the process when it is operating under statistical control. Two capability indices are usually computed: C_p and C_{pk} in a similar way as was described with P_p and P_{pk} . However, C_p measures the **potential** capability in the process, if the process was centred, while C_{pk} measures the actual capability in a process which is off-centre or biased. If a process is centred, then $C_p = C_{pk}$.

$$S_{pk} = \min\left[\frac{U - \bar{X}}{3S_w}, \frac{\bar{X} - L}{3S_w}\right]$$
(1.5)

The critical thing to note is that whilst the formulae for P_{pk} and C_{pk} look very similar, the standard deviation used to calculate the reference interval for C_{pk} is not S_t but S_w .

S_w is the within batch standard deviation (called the within sub group standard deviation in ISO) not the overall process standard deviation. It is usually estimated from a Shewhart mean and range control chart using the formula

ECA _AQCG_ SOP 03_APLM_v1.0_July 2018_Final_r1

Page 78 of 80

Analytical Procedure Lifecycle Management

European Compliance Agency, Analytical Quality Control Group, July 2018, Final_r1

S-Matrix, Fusion QbD – Integrated Monte Carlo Robustness

Robustness Simulation – Performance Variation in 10,000 Runs

S-Matrix

S-Matrix Mean Performance and Integrated Robustness

Supports All Install Environments (Citrix Ready Certified)

Full 21 CFR Part 11 Compliance Support

Flexible, Automated (1-Click) Design

Full LC Testing Automation

Simplifies Handling of Complex Data

Integrated Monte Carlo Robustness

Full QbD Reporting

S-Matrix Reporting Harmonized with Regulatory Guidances

ICH Q8(R2) – Page 22

C. Presentations of Design Space

Example 1: Response graphs for dissolution are depicted as a surface plot (Figure 1a) and a contour plot (Figure 1b). Parameters 1 and 2 are factors of a granulation operation that affect the dissolution rate of a tablet (e.g., excipient attribute, water amount, granule size.)

Figure 1a: Response surface plot of dissolution as a function of two parameters of a granulation operation. Dissolution above 80% is desired. Figure 1b: Contour plot of dissolution from example 1a.

Figure 1c: Design space for granulation parameters, defined by a nonlinear combination of their ranges, that delivers satisfactory dissolution (i.e., >80%).

S-Matrix Reporting Harmonized with Regulatory Guidances

Robust Design Space Trellis

Response Variable Goals

Name	Units	Goal	Color	Lower Bound	Upper Bound
API 1 - %L.C(1_1)	•	Target	Red	97.50	99.50
API 2 - %L.C(1_2)	•	Target	Blue	98.70	100.70
API 1 - %L.C(1 1) - Cpm		Maximize	Orange	1.33	
API 2 - %L.C(1_2) - Cpm		Maximize	Green	1.33	

Proven Acceptable Range Settings

Axis	Name	Units	Lower Bound	Upper Bound	Centerpoint
Х	Organic Level	%	48	52	50
Y	Shaker Speed	rpm	120	180	150

Trellis Variable Settings

Series	Variable Name	Units	Low	Middle	High
Horizontal	Buffer pH	^	8.30	8.50	8.70
Vertical	Shaker Time	min	60	65	70

Graph Variable Goals

Name	Units	Graph Setting	Range/Level(s)
Organic Level	%	X Axis Variable	45 <= Organic Level <= 55
Sonication Time	min	Constant	0
Shaker Speed	rpm	Y Axis Variable	100 <= Shaker Speed <= 200
Buffer pH	•	Horizontal Trellis Levels	8.30, 8.50, 8.70
Shaker Time	min	Vertical Trellis Levels	60, 65, 70

Experiment Variables for Robustness Simulator

Included	Variable Name	Units	Maximum Expected Variation (+/- 3 Sigma Value)
Yes	Buffer pH	^	0.20
Yes	Organic Level	%	2
No	Sonication Time	min	
Yes	Shaker Speed	rpm	5
Yes	Shaker Time	min	2

Responses for Robustness Simulator

Response Name	Robustness Index	Specification Limit (+/- distance from target)	LSL	USL	Target	Additional Error	Additional Error Amount (+/- 3 Sigma Value)
API 1 - %L.C(1_1)	Cpm	1.00		-	98.50	None	None
API 2 - %L.C(1 2)	Cpm	1.00			99.70	None	None

Report Settings

Setting	Value
Report Name	Robust Design Space Trellis
Action	Report Created
Report Type	Trellis Graph
Graph Category	Process
Include PARs	Checked
Include Verification Runs	Unchecked
Include Verification Runs in Report	Unchecked

2 of 2

Reports can be output in a variety of file formats:

PDF / MS Word / HTML / TXT / XLSX

1 of 2

42

Example Applications

Tablet Coating Optimization

Tablet Excipient Formulation and Process Optimization

Example 1 – Tablet Coater Optimization

Experiment Setup]			Tab	Tablet Coater Processes Optimization S					
Experiment Type Optimization	-								
Mixture Variable Settings	-								
No. of Mixture Variables									
Process Variable Settings No. of Process Variables 4 Split-plot Design (restriction on randomi	ization)								
Name	Units	Туре	Lower Bound	Upper Bound					
Atomizing Air Pressure	psi	Too too Continuous	-	10.0	50.0				
State © Variable C Constant									
Name	Units	Туре	Lower Bound	Upper Bound					
Pattern Air Pressure	psi	Continuous	.	0.0	55.0				
State Variable Constant									
Name	Units	Туре	Lower Bound	Upper Bound					
Spray Rate	mg/min	Continuous	•	40.0	125.0				
State Variable Constant									
Name	Units	Туре	Lower Bound	Upper Bound					
Gun Distance	inches	Continuous	•	4.0	10.0				
State Variable C Constant									

S-Matrix. 4-Factor Trellis – Mean Performance and Robustness

	Benoits	- Graph
	Find Davim Cases - DADa	Spray Rate = 40.0 Spray Rate = 50.0 Spray Rate = 60.0
Oesign Reports	There are a second and a second	
→ Data Entry		
Oata Analysis	Axis Variable Units Lower Bound Upper Bound	
Best Overall Answer	X Atomizing Air Pressure (A) visit 10.0 50.0	
Acceptable Performance Region Point Predictions	Y Pattern Air Pressure (B) 💌 psi 0.0 55.0	
Visualization Graphics		
Single Response Series Multiple Response Series	Sprav Rate (C)	
Reporting Toolkit		
	Inv 400 Inv 60	
	Middle 50.0 Middle 7.0	
	High 60.0 High 8.0	3.0
	└ Verification Run Settings	━┃║ _╺ ╟──╋━━┿━╋ _┝ ╟──╋━━┿━╋ _┍ ╿╷
	V Include Independently Adjustable Ranges Rectangle	
	Variable Lower Upper Center Point Pointer Bound Bound Coordinate Coordinate	× ×
	Atomizing Air Pressure 20.0 40.0 30.0 Pattern Air Pressure 5.0 25.0 15.0	
	☐ Include Verification Runs	
		Ö
		10.0 30.0 50.0 10.0 30.0 50.0 10.0 30.0 50.0 10.0 30.0 50.0 Atomizing Air Pressure Atomizing Air Pressure Atomizing Air Pressure
		Overlay
		Response Settings
		Name Goal Bound Color
		API - % Released - f1 (2) Minimize V 10.00 Blue V
		Image: API - % Released - rz (z) Maximize v 60.00 Green v Image: API - % Released - rz (z) Maximize v 60.00 Green v Image: API - % Released - rz (z) Maximize v 1.33 Orange v
		API - % Released - f1 (2) - Cpk Maximize V 1.33 Teal V API - % Released - f2 (2) - Cpk Maximize V 1.33 Purple V
	Na Validation Status: Your settings are valid.	
Ready		modified

S-Matrix 4-Factor Trellis – Mean Performance and Robustness

Independently Adjustable Ranges

Variable	Lower Bound	Upper Bound	Center Point
Atomizing Air Pressure	20.0	40.0	30.0
Pattern Air Pressure	5.0	25.0	15.0
Spray Rate	40	60	50
Gun Distance	6	8	7

Example 2 – Tablet Excipient Formulation and Critical Process Factor Optimization

Formulation + Processes Optimization Study

periment Setup										
xperiment Type Optimiz	ation 💌									
lixture Variable Setting:	\$									
No. of Mixture Varia	bles 4 💌									
its Mixtur	e Amount									
	100.00	.00								
xture Variable	State	Lower Bound	Upper Bound							
arch	Variable 🔻	2.00	25.00							
ctose	Variable 💌	2.00	25.00							
C	Variable 🔻	2.00	25.00							
01-90	Constant 💌	75.00								
Process Variable Setting No □ Split-plot Design (i Name	gs o. of Process Varial restriction on rando	bles 1 💌	Units		Тире		Lower Bound		Upper Bound	
ano				0 +.ol		1000		0.00		20.25
ompaction Force			IKN	.00 .00	Continuous	•	1	9.88		20.35
State Variable										

S-Matrix, Final Design Space – Mean Performance and Robustness

S-Matrix. 4-Factor Trellis – Mean Performance and Robustness

Independently Adjustable Ranges

Variable	Lower Bound	Upper Bound	Center Point
Starch	2.00	6.00	4.00
Lactose	5.00	9.00	7.00
MCC	14.00	18.00	16.00
Compaction Force	16	20	18

Example Workflows

- Sample Preparation Method Development
- **Dissolution Method Development**
- Respiratory Drug Development

S-Matrix, FPD – Sample Preparation Method Development

FPD – CE Method Development

FPD – Respiratory Drug R&D

S-Matrix,

🙀 Fusion F <u>F</u>ile <u>E</u>dit

FPD – Respiratory Drug R&D

🙀 Fusion Product Development	- Training Example 1 - Tablet Coater Optimization - Analy	lysis.smae		-				
<u>File Edit M</u> odule <u>T</u> ools <u>W</u> in	ndow <u>H</u> elp							
D 🗗 🖻 🖫 📕 🎒 🔳	🕂 Create Testing Design 🚊 Delete Testing Design 🚊	Export 📑 Create	Response 🚿 Edit Res	ponse 🛛 🗰 Delete Resp	oonse 👎 Response Reduc	tions 🕜		
Design of Experiments	Response Name Response Units Create Response Units							
Design Reports	Other * 0 <= Response <=							
Data Entry / Analysis			· · ·		\rightarrow \leftarrow			
Coordinated	dResponse	Carry				~		
Reductions:		Response Reductions Wizard - Testing Design (TD3)						
		Analysis and Repr	rting Mode General	Regression Data Settings Option 1 Option 2	Option 1 Option 2			
		-Material/Mass Ba	ance erial/Mass Balance		X Data = NormStdInv(Cumulative Proba Y Data = Log(Particle Size)	bility)		
 Mass Me 	dian Aerodynamic	-Optional Groups	vy Stage		Optional Group Calculations			
Diameter (MMAD)		Additional Groups 0						
			presing from bogge	, to orage	Group Mass			
 Geometric Standard Deviation 			1000 - 1000		Group Retention			
		Device	From Stage Retention Stem	To Stage				
(000)		-Optional Groups Additional C	ny Particle Size					
 Fine Particle Dose (FPD) 		# Group Name Minimum Maximum Calculation Method Regression Settings ③ Standard ① Custom						
, Fire a Dentiale Frenchiere (FDF)				Lower Bound% Upper B Linearity Range 5 + 95	Lower Bound% Upper Bound% arity Range 5 v 95 v			
 Fine Part 	icle Fraction (FPF)				R-square Value 0.95			
 Total Dos 	se and Emitted Dose	The settings are va	10.257	Drug Distribution per Disc	harge			
• Internale	tion and Degrapsion		9 7.693		7.693	Next Cancel		
	lion and Regression		5 129		王 			
Calc Opti	ions		de d					
. Data Ora	uning Ontions				2,004			
 Data Grouping Options 			0.000 Devic	Stage Stage Stage	Stage C			
•			10 M	4 1 2 2 1	5 6 4			

End of Presentation

www.smatrix.com

S-Matrix.