Fusion QbD® Software System

Fusion Analytical Method Validation

The Only Software That Has It All!

- 100% aligned with FDA/ICH Quality by Design (QbD) guidances!
- Can be used for LC and Non-LC methods (e.g. GC, CE, Q-NMR)!
- Automates LC method validation experiments on multiple instruments and CDS systems!
- Regulatory accepted validation for both Small & Large Molecules!
- Statistically rigorous and defensible robustness testing!
- Handles multiple compounds – creates complete reports for each!
- Shortens your LC method validation time by as much as 75%!
Automated Experimentation for LC Method Validation

The objective of Method Validation is to provide documented evidence and a high degree of assurance that an analytical method employed for a specific test is suitable for its intended use. Method Validation is a regulatory requirement as much as a scientific necessity.

Key Benefits

- **Full Automation for LC Method Validation** – multiple LCs and CDS systems
- **Phased Method Validation** –
 - Early Phase – performance characterization supports development
 - Final Phase – Aligned with FDA and ICH guidances
- **21 CFR 11 compliance support toolset** –
 - Including E-records and E-signatures, full audit logging
 - Workflow management system with E-review and E-approve loops
- **Easy setup of experiments** –
 - Create standardized workflow templates
 - Facilitate rigorous practice and defensibility
- **Simple documentation review and reporting** –
 - Easy to defend and communicate
 - Reports meet all FDA and ICH guidelines

Early Phase Method Validation (Performance Characterization)

- Analytical Capability and System Suitability
- Specificity
- Filter Validation
- Accuracy
- Linearity and Range
- LOQ, LOD
- **Repeatability** (intra-assay precision)
- Sample Solution Stability (stability for a given time period under prescribed conditions)

Final Phase Method Validation (FDA and ICH Submittal Quality)

- Analytical Capability and System Suitability
- Specificity
- Accuracy/Linearity and Range/Repeatability – Combined Design
 - [ICH-Q2(R1) – Accuracy, Linearity, and Repeatability can be done together as a single combined experiment]
- LOQ, LOD
- Intermediate Precision and Reproducibility (USP Ruggedness)
- Robustness – done the right way!

Non-LC Method Validation Experiments

Used successfully for Non-LC methods such as GC, CE, Q-NMR, as well as hyphenated methods (e.g. LC-MS). Accepted in customer regulatory submittals.
Automated LC Method Validation – Five Step Workflow

1. You complete a simple experiment setup template.
2. Fusion QbD creates the Validation Experimental Design and exports it to the CDS.
3. The CDS runs the validation experiment sequence.
4. Fusion QbD imports and analyzes the results.
5. Fusion QbD automatically creates final reports and graphs.

Example Workflow – Combined Accuracy / Linearity / Repeatability

Step 1 – You Complete the Template

Fusion LC Method Validation Software (FMV) has simple experiment setup templates for each type of validation experiment. The simple Linearity and Range template is shown below with user definable settings:

User-definable Settings – Basic Setup
- Include Limit of Quantitation
- Include Limit of Detection
- No. of Compounds
- No. of Levels per Compound
- 100% Standard Level
- No. of Injections of 100% Level

User-definable Settings – Method Performance Acceptance Criteria
- Linearity (% Bias <)
- Linearity (Regression r >=)
- Accuracy (% Bias <)
- Repeatability (% RSD <=)

User-definable Settings – Standards Setup

FMV has a flexible Standards Setup wizard which enables you to select your desired standards strategy for results quantitation within the CDS:
- Bracketing – Overlap
- Bracketing – Non-overlap
- Grand Average
- Calibration and Check Standards

Flexible setup of the required Standards Strategy.
Step 2 – Fusion QbD Creates the Validation Experimental Design and Exports it to the CDS

FMV automatically constructs the validation experiment designs within the CDS as ready-to-run sequences/sample with the proper Vial No. and Injection Type designations for Samples, Standards, and Blanks.

Step 3 – CDS runs the Validation Experiment

FMV sequences run automatically on the CDS. FMV even enables you to include a Shutdown method as the last method run so that you can execute FMV sequences overnight while you sleep!

Step 4 – Fusion QbD Imports and Analyzes the Chromatogram Results

FMV automatically imports the required peak result data from the CDS, and re-maps the results to the design for automated analysis, graphing, and reporting. This is a key feature ensuring quality, as manual transcription is a common source of error and risk.
ICH Q2(R1): LINEARITY

… If there is a linear relationship, test results should be evaluated by appropriate statistical methods, for example, by calculation of a regression line by the method of least squares…

The correlation coefficient, y-intercept, slope of the regression line, and residual sum of squares should be submitted. A plot of the data should be included…:

- Correlation Coefficient
- Y Intercept
- Slope of the Regression Line
- Residual Sum of Squares
- Linear Regression Plot
- Residuals Data Table and Plot

<table>
<thead>
<tr>
<th>Linearity and Range</th>
<th>API - Amount (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOWER LIMIT</td>
<td>1.000 API = 1.000</td>
</tr>
<tr>
<td>UPPER LIMIT</td>
<td>7.000 API = 7.000</td>
</tr>
</tbody>
</table>

FMV enables you to include images of representative chromatograms into your final reports. You can associate these chromatogram images with any of the individual results reports which **FMV** automatically generates,

ICH Q2(R1):

For chromatographic procedures, representative chromatograms should be used to demonstrate specificity, and individual components should be appropriately labeled. If DL is determined based on visual evaluation or based on signal-to-noise ratio, the presentation of the relevant chromatograms is considered acceptable for justification.
Robustness Validation – DONE RIGHT!

Experiment Setup – Non LC Robustness
You define the parameters to include in the FMV robustness experiment. FMV will automatically generate a statistically rigorous and defensible robustness design. FMV will instantly analyze all variable effects and test them for robustness according to your Pass/Fail criteria for each method performance characteristic you include in the analysis.

Experiment Setup – LC Robustness
You select the parameters to include in the FMV robustness experiment. FMV will automatically generate the robustness design, re-construct it in the CDS as ready-to-run methods and sequence, import the chromatogram results directly from the CDS, re-map them to the robustness study, and instantly analyze, graph, and report the results.

The FMV Difference Lowers your Field Failure Risk
FMV robustness experiments let you use valid experiment ranges for accurate, defensible estimates of parameter effects.

This avoids the risks associated with setting ranges equal to the expected variation ranges of your instrument parameters.

FMV robustness analysis wizard lets you set:
- expected parameter variation ranges
- acceptable performance limits for each key response

The wizard then accurately determines and reports the method’s true robustness.
Robustness Validation – *Statistical Significance Testing* – Model Coefficients

Coded Variable Name Key

<table>
<thead>
<tr>
<th>Coded Variable Name</th>
<th>Actual Variable Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Int % Organic</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Oven Temperature</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>All</td>
<td></td>
</tr>
</tbody>
</table>

Variable Effects Table – Statistical Significance

<table>
<thead>
<tr>
<th>Coded Variable</th>
<th>Coefficient Value</th>
<th>Predicted Effect</th>
<th>Effect Standard Error</th>
<th>Effect %</th>
<th>Pass/Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.4000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>Fail</td>
</tr>
<tr>
<td>B</td>
<td>0.8000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>Pass</td>
</tr>
<tr>
<td>A×B</td>
<td>(2.0000)</td>
<td>(2.0000)</td>
<td>(2.0000)</td>
<td>(2.0000)</td>
<td>Pass</td>
</tr>
<tr>
<td>A×C</td>
<td>0.1000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>Pass</td>
</tr>
<tr>
<td>B×C</td>
<td>0.9000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>Pass</td>
</tr>
</tbody>
</table>

Maximum Allowable Value: (Predicted Tolerance Limit statistic) $\times 2.0000$ for each variable studied.

Predicted Tolerance Limit Effects - Statistical Significance

Variable Effects Table – Practical Significance

<table>
<thead>
<tr>
<th>Coded Variable</th>
<th>Coefficient Value</th>
<th>Predicted Effect</th>
<th>Effect Standard Error</th>
<th>Effect %</th>
<th>Pass/Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.4000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>Fail</td>
</tr>
<tr>
<td>B</td>
<td>0.8000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>Pass</td>
</tr>
<tr>
<td>A×B</td>
<td>(2.0000)</td>
<td>(2.0000)</td>
<td>(2.0000)</td>
<td>(2.0000)</td>
<td>Pass</td>
</tr>
<tr>
<td>A×C</td>
<td>0.1000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>Pass</td>
</tr>
<tr>
<td>B×C</td>
<td>0.9000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>Pass</td>
</tr>
</tbody>
</table>

Maximum Allowable Difference from Mean: (Predicted Tolerance Limit Effect) $\times 150,000$ for each variable studied.

Predicted Tolerance Limit Effects - Practical Significance

Automated LC Method Validation – Proven ROI

International Pharma Co. Benchmarking Project

Realized Time Savings = 85%.

Using historical records* and adjusting for project complexity

Minimum Expected Time Savings = 60%.

Copyright (©) 2015 S-Matrix Corporation, All Rights Reserved.
S-Matrix Corporation develops advanced Design of Experiment based-software that automates R&D experimental work according to Quality-by-Design principles and methodologies. S-Matrix’s Fusion QbD platform automates and redefines experimentation in Analytical R&D, Chemical and Process R&D, Formulation, and Product R&D.

Fusion QbD Software System Product Suite

■ Fusion LC Method Development
 Fully automated QbD experimenting on your LC system, integrated DOE, automated robustness simulation & chromatography data modeling. Chemistry screening without the need for peak tracking.

■ Fusion Analytical Method Validation
 Meet regulatory guidelines with a best-practices approach toward LC method validation with comprehensive reporting. Also supports formal validation of Non-LC methods (e.g. GC, CE, Q-NMR).

■ Fusion Inhaler Testing
 Create sampling plans, export and import data from your CDS via validated data exchange, calculate particle size distribution results, and generate reports according to USP 601, Ph.Eur. 2.9.18, and ISO 27427.

■ Fusion Product Development
 The perfect QbD software for formulation & product development – automated experimental design selection, sophisticated analysis tools, including automated modeling and simulation, comprehensive reporting, with a full 21 CFR 11 compliance toolset.

Sales and Support

Sales: Tel: 800-336-8428 (Outside the USA: 707-441-0406). Email: Sales@smatrix.com
Customer Support: Tel: 707-441-0407. Fax: 707-441-0410. Email: Support@smatrix.com

On-site and Web Training

S-Matrix offers on-site training programs for installed systems. Training includes experiment strategies, experimental design (DOE), data analysis, graphical visualization and ranking of effects, numerical and graphical optimization, and QbD Reporting.

S-Matrix also offers interactive web training which covers software features and operation, along with general principles of DOE and QbD. Web training programs can be tailored to suit your individual focus and information requirements.

To arrange an on-site or web-based training program, call 707-441-0406.