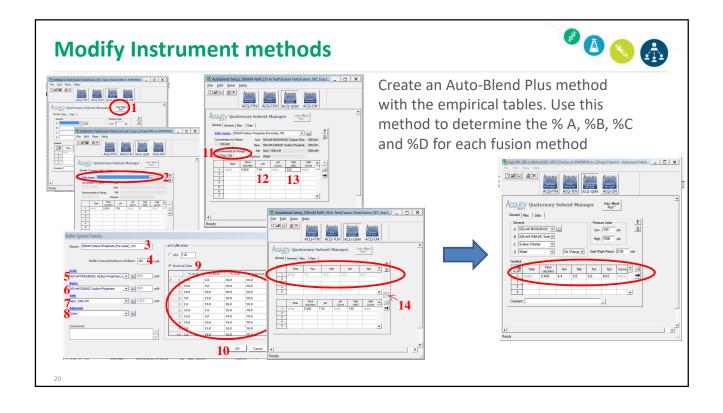
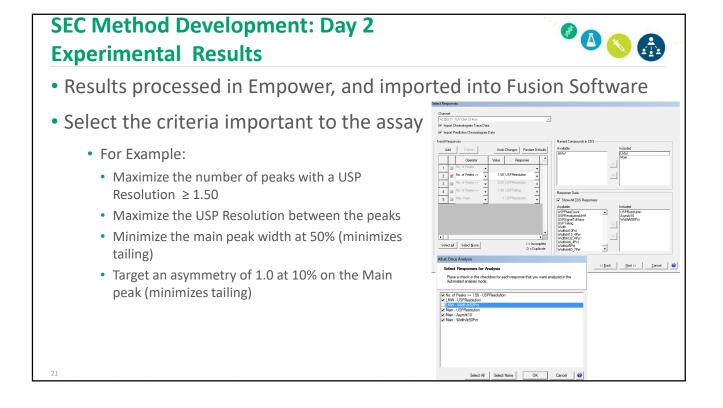
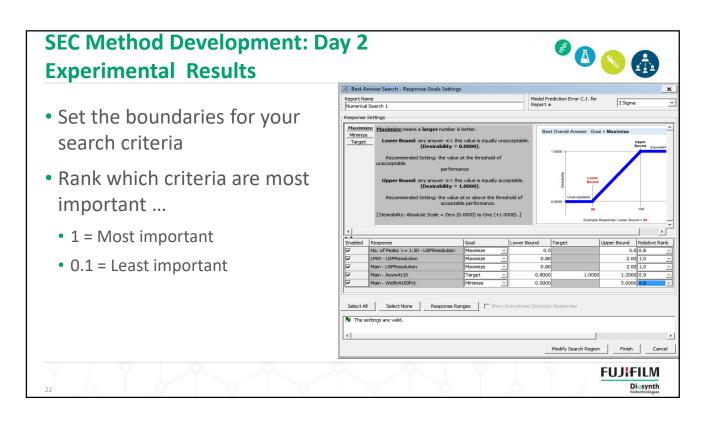


SEC Method Development: Day 1	 Image: A state of the state of
Prepare Mobile phases	
 Premade 0.5 M Sodium Phosphate, Monobasic Adjust pH to 2.0 using Phosphoric Acid Premade 0.5 M Sodium Phosphate, Dibasic Premade 1 M Sodium Chloride 	
Create 3 Samples	
 Un-spiked If your sample already has a sufficient LMW and HMW content, the spike tests may n Spike 10% LMW LMW: A sample of antibody is treated with FabRICATOR[®] digestion enzyme (Genovis) and F(ab')2 fragments (~50 kDa and ~100 kDa, respectively) 	
 Spike 10% HMW HMW: A sample of antibody is heated at 70°C for 4 hours then vortexed for 2 hours to 	o create aggregates
	FUJIFILM

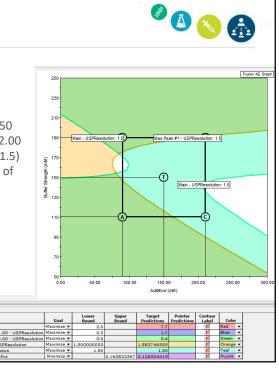


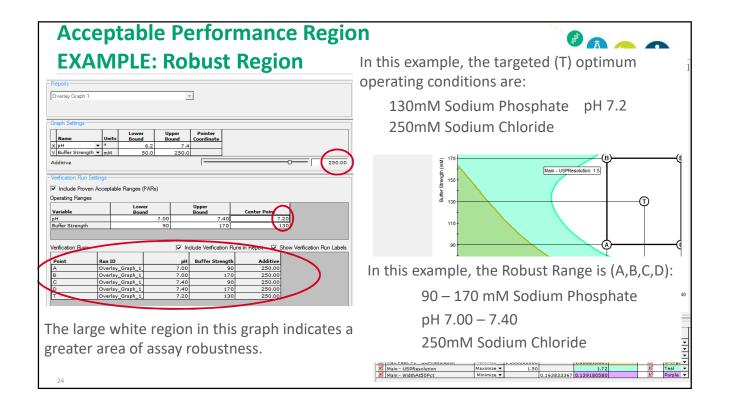

ct Name	Experiment Name	al Setup (P		Experiment Phase	Experiment Type	Chromatography Type	
ct Name er, Salt, pH Setup	Experiment Name	Notes	HPL-0384N	Method Development	General Optimization	Size Exclusion - Gel Filtration	
periment Setup Sampling	Plan						
thod Type Isocratic ailable Variables ample Concentration at Type differ Type didtive Concentration didtive Type didtive Type	-	Included Variables Pump Flow Rate Injection Volume Uven Temperature Wavelength pH Salt Concentration		Activ	rate Online Preparation		
ame 'ump Flow Rate		Units mL/min	Type		Amount		0.200
C Variable € Constant ame		Units	Туре		Amount		
njection Volume			Discrete Nume	ric			8.0
State Variable Constant							
Solvent Settings No. of Strong Solvents: 1	No. of Weak Solvents:	1 Sample Preparation M		Available Reservo			
CK to Blend Strong Solvents	🔲 OK to Blend Weak	Solvents Mobile Ph	ase Precision 50 50				
Mobile Phase Name	Solvent Type Strong	Constant - 20.0	Bound Reservoir		1		
Buffer Solution	Weak	Constant 80.0					

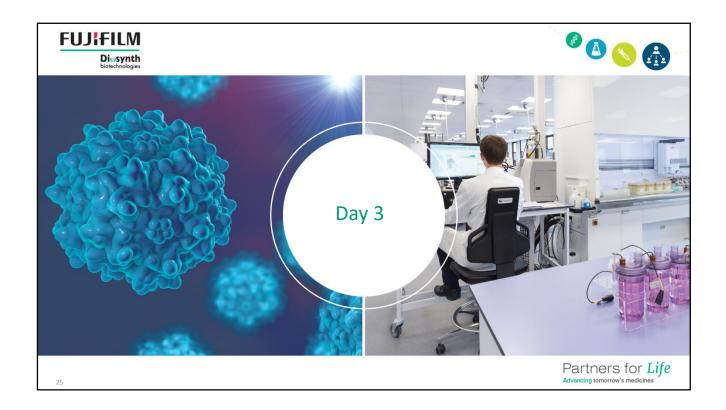

SEC Method Dev Fusion Experime	-	-		
Punp Program Punp Program No. Step Name Time State Mo. Step Name Time State Mo. Step Name Time State State Display State State Display State Sta	Time Precision 2020 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Name Oven Temperature State C Variable G Constant	Units TC	Type	Amount	25.0
Name Wavelength State C Variable C Constant	Units	Type IDiscrete Numeric	Amount	280
Name [Sat Concentration State C Constant	Units	Type [] Discrete Numeric No. of Levels 5 💌	Level Settings Level 1 Level 2 Level 3 Level 4 Level 5	0.00 50.00 100.00 200.00 300.00

SEC Method Development: Day 2 Instrument & Sample set method modifications Instrument & Sample set method modifications The fusion experiment is exported into empower. This creates all of the Instrument methods, method sets, and sample sets. The sample sets can be shortened to remove extra conditioning, washes and shutdowns The instrument methods are modified to deliver the correct percentages of Mobile phases A, B, C and D for each targeted condition

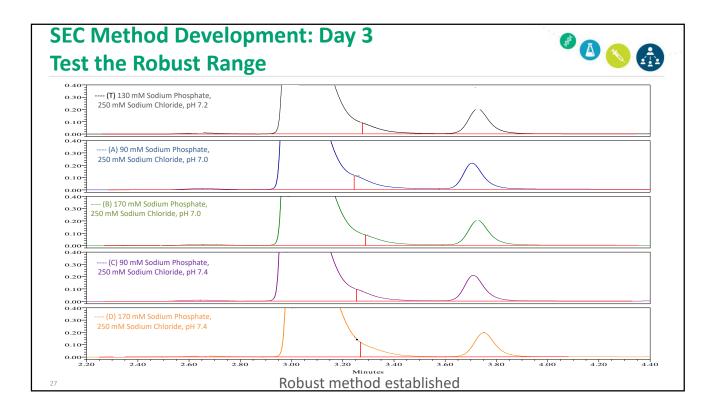
Plate/Well	Inj Vol (uL)	# of Injs	Label	SampleName	Lev	el	Fund	tion	Metho Report		Run Time (Minutes)	Column Position					
						С	ondition (Column	Exp1_ 00	_035	10.00	No Change					
						E	quilibrate		Exp1_00	I_001	90.00	No Change					
1:A,1	0.1	1	Unk-001-001	01_100mM Phos_0mM Salt_pH6.2		In	ject Sam	oles	Exp1_00	I_001	12.00						
						C	ondition (Column	Dama		f the of	Column (Tou die	ion			
						E	quilibrate					Column (
1:A,1	0.1	1	Unk-001-002	02_100mM Phos_0mM Salt_pH7.2		In	ject Sam	oles				uilibrate	steps,)			
						E	quilibrate		Exp1_ 00	1_003	90.00	No Change					
1:A,1	0.1	1	Unk-001-003	03_100mM Phos_0mM Salt_pH7.2		_	ject Sam		Exp1_00	-	12.00						
							ondition (Column	Exp1_00			No Change					
							quilibrate		Exp1_00	-		No Change	_				
1:A,1	0.1	1	Unk-001-004	04_150mM Phos_0mM Salt_pH6.2			ject Sam		Exp1_00	-	12.00						
							ondition (Exp1_00	-		No Change	_				
hange	the	Via	l to 1A1	in all the sample		C	ondition (olumn	Shutdown	1	10.00	No Change					
ets				_					Remove set	shutdo	own fre	om each	sampl	е			
					13	Plate/	Well Vo (uL		Label		SampleNa	ame	Level	Function	Method Set / Report Method	Run Time (Minutes)	Column Position
					1									Equilibrate	Exp1_001_001	90.00	No Change
					2	1:A,1	0.	1 1	Unk-001-001	01_100m	nM Phos_Or	mM Salt_pH6.2		Inject Samples	Exp1_001_001	12.00	
					3									Equilibrate	Exp1_001_002		No Change
						1:A,1	0.	1 1	Unk-001-002	02_100m	nM Phos_Or	nM Salt_pH7.2		Inject Samples	Exp1_001_002	12.00	
					5									Equilibrate	Exp1_001_003		No Change
					6	1:A,1	0.	1 1	Unk-001-003	03_100m	M Phos_Or	nM Salt_pH7.2		Inject Samples	Exp1_001_003	12.00	
					7									Equilibrate	Exp1_001_004	-	No Change
					18	1:A,1	0.	1 1	Unk-001-004	04 150m	M Phos Or	nM Salt nH6 2		Inject Samples	Exp1_001_004	12.00	

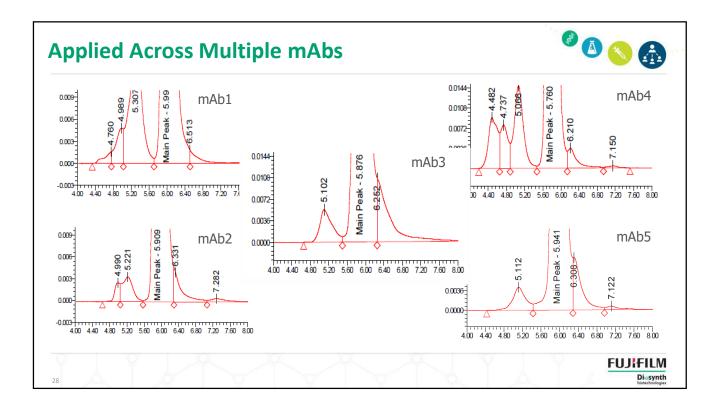


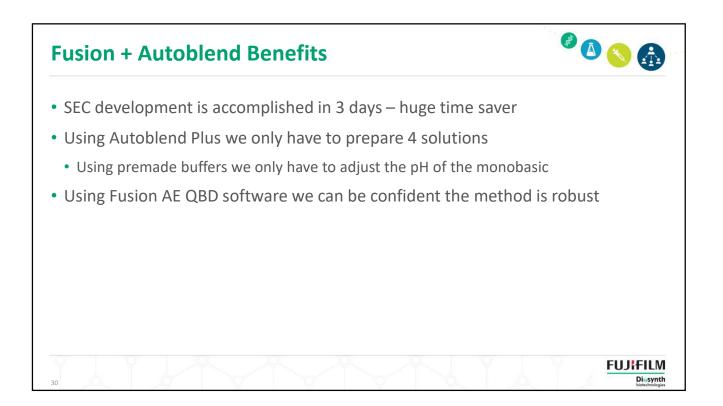



Acceptable Performance Region EXAMPLE: Non-Robust Region

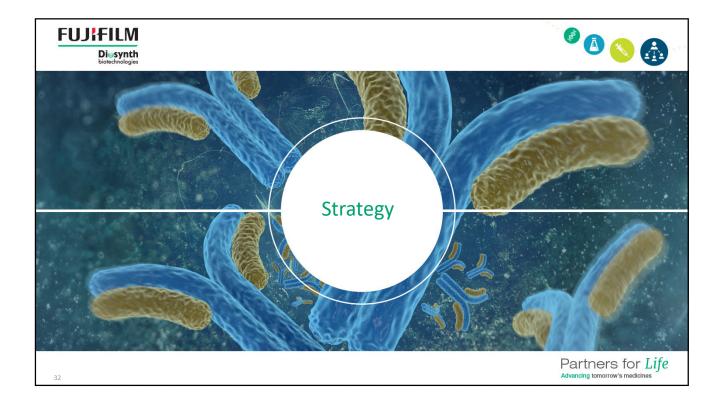
• "White Space" or operating space is determined where all criteria are met via statistical calculation.

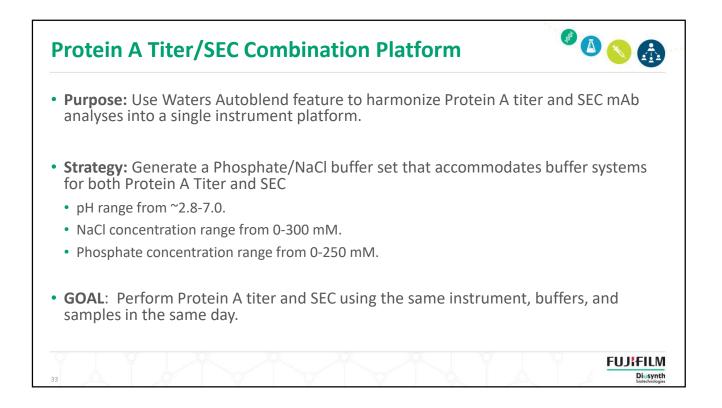

- Red = Maximize the number of peaks (minimum of 2)
- Blue = Maximize the number of peaks with a USP Resolution \ge 1.50
- Green = Maximize the number of peaks with a USP Resolution ≥ 2.00
- Orange = Maximize the USP Resolution of Peak #1 (minimum of 1.5)
- Teal = Maximize the USP Resolution of the Main Peak (minimum of 1.5)
- Purple = Minimize the width at 50% of the Main peak (Reduce tailing) < 0.16
- The small white space in this image indicates a limited operating range under these conditions

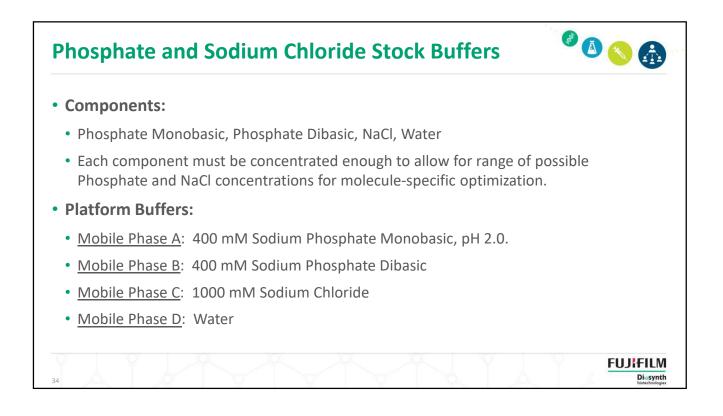


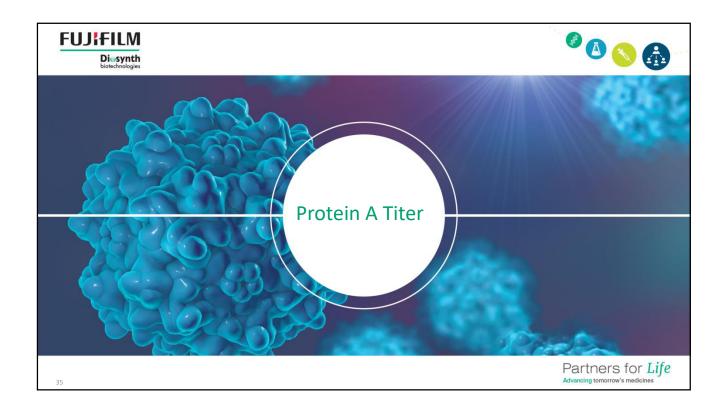


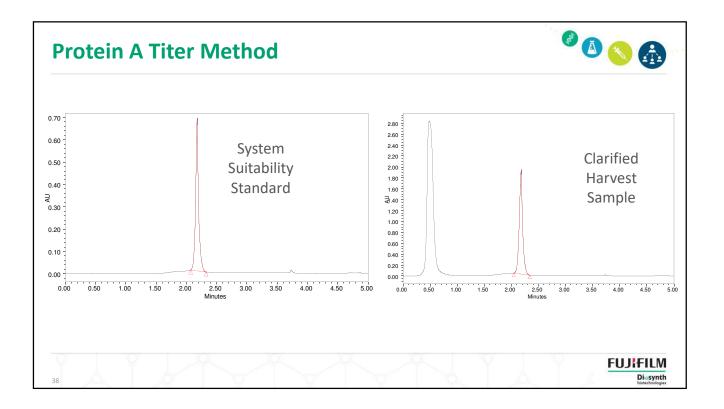
SEC Method Development: Day 3 🖉 🔕 🚯 **Test the Robust Range** The next step in the Fusion Software, creates the Robustness Testing Sample set / Method sets Ŧ In this example the following conditions will be tested: X pH Y Buffer Streng (A): pH 7.00, 90 mM Sodium Phosphate, 250 mM Sodium Chloride 250.00 Additive (B): pH 7.00, 170 mM Sodium Phosphate, 250 mM Sodium Chloride ✓ Include Pro eptable Ranges (PARs) (C): pH 7.40, 90 mM Sodium Phosphate, 250 mM Sodium Chloride Operating Ranges (D): pH 7.40, 170 mM Sodium Phosphate, 250 mM Sodium Chloride Upper .20 (T): pH 7.20, 130 mM Sodium Phosphate, 250 mM Sodium Chloride ✓ Include Ve ow Verification Run Labe ın ID y Graph 250. 250.0 250.0 250.0 250.0 Overlay_Graph_1 Overlay_Graph_1 7.40 7.40 7.20 Main -

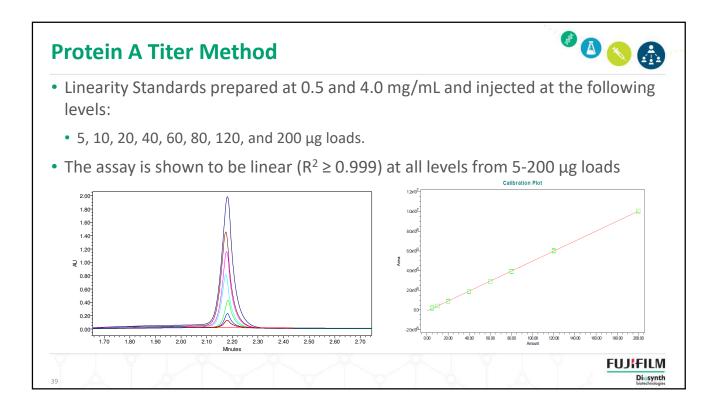






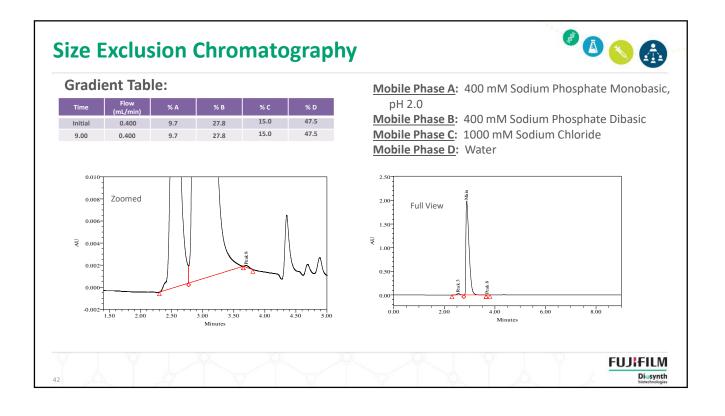




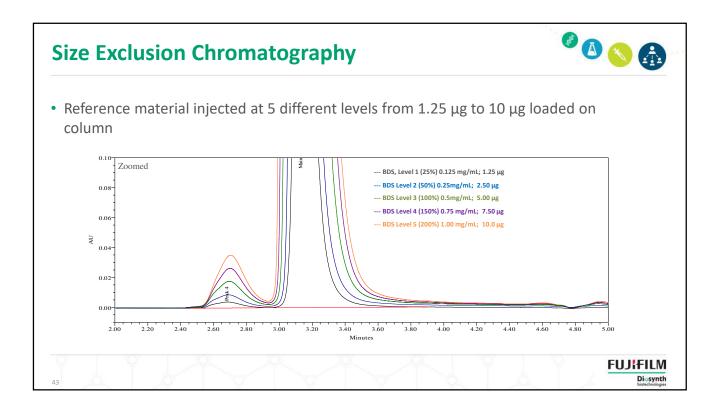


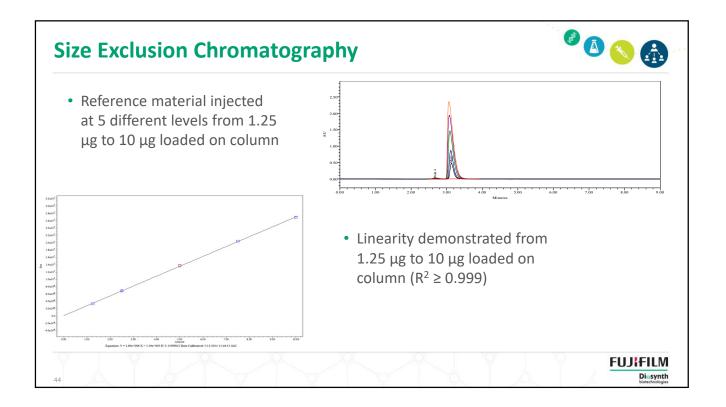
Protein A Titer Buffer Tak	ole						
• HPLC Titer Method:							
• Equilibration Buffer: pH 7.0, 3	800 mN	1 NaCl, 2	20 mM	Phosph	nate		
• Elution Buffer: pH 2.8, 300 m	M NaCl	, 20 mN	/I Phosp	bhate			
			Autoble	nd Buffe	er Table		
Covers entire range of both	Final Concentration of NaPO4	Final Concentration of NaCl	Autoble % 400 mM Monobasic, pH 2.0	nd Buffe % 400 mM Dibasic	er Table % 1000 mM NaCl	% Water	рН
Covers entire range of both	Concentration	Final Concentration	% 400 mM Monobasic,	% 400 mM	% 1000 mM	% Water 95	рН 2.55
0	Concentration of NaPO₄	Final Concentration of NaCl	% 400 mM Monobasic, pH 2.0	% 400 mM Dibasic	% 1000 mM NaCl		
elution and equilibration	Concentration of NaPO₄ 20	Final Concentration of NaCl 0	% 400 mM Monobasic, pH 2.0 4.5	% 400 mM Dibasic 0.5	% 1000 mM NaCl 0	95	2.55
0	Concentration of NaPO ₄ 20 20 20 20	Final Concentration of NaCl 0 0 0 150	% 400 mM Monobasic, pH 2.0 4.5 2.5 0.5 4.5	% 400 mM Dibasic 0.5 2.5 4.5 0.5	% 1000 mM NaCl 0 0 0 15	95 95 95 80	2.55 6.44 7.72 2.39
elution and equilibration buffers of conventional	Concentration of NaPO ₄ 20 20 20 20 20 20	Final Concentration of NaCl 0 0 0 150 150	% 400 mM Monobasic, pH 2.0 4.5 2.5 0.5 4.5 2.5	% 400 mM Dibasic 0.5 2.5 4.5 0.5 2.5	% 1000 mM NaCl 0 0 0 15 15	95 95 95 80 80	2.55 6.44 7.72 2.39 6.18
elution and equilibration	Concentration of NaPO ₄ 20 20 20 20	Final Concentration of NaCl 0 0 0 150	% 400 mM Monobasic, pH 2.0 4.5 2.5 0.5 4.5	% 400 mM Dibasic 0.5 2.5 4.5 0.5	% 1000 mM NaCl 0 0 0 15	95 95 95 80	2.55 6.44 7.72 2.39
elution and equilibration buffers of conventional	Concentration of NaPO ₄ 20 20 20 20 20 20 20 20 20	Final Concentration of NaCl 0 0 0 150 150 150	% 400 mM Monobasic, pH 2.0 4.5 2.5 0.5 4.5 2.5 0.5	% 400 mM Dibasic 0.5 2.5 4.5 0.5 2.5 4.5 4.5	<mark>% 1000 mM NaCl</mark> 0 0 15 15 15	95 95 95 80 80 80 80	2.55 6.44 7.72 2.39 6.18 7.45
elution and equilibration buffers of conventional	Concentration of NaPO ₄ 20 20 20 20 20 20 20 20 20 20	Final Concentration of NaCl 0 0 150 150 150 150 300	% 400 mM Monobasic, pH 2.0 4.5 2.5 0.5 4.5 2.5 0.5 4.5 4.5	% 400 mM Dibasic 0.5 2.5 4.5 0.5 2.5 4.5 0.5 4.5 0.5	% 1000 mM NaCl 0 0 15 15 15 15 30	95 95 95 80 80 80 80 65	2.55 6.44 7.72 2.39 6.18 7.45 2.46
elution and equilibration buffers of conventional	Concentration of NaPO₄ 20 20 20 20 20 20 20 20 20 20 20 20	Final Concentration of NaCl 0 0 150 150 150 150 300 300	% 400 mM Monobasic, pH 2.0 4.5 2.5 0.5 4.5 2.5 0.5 4.5 2.5 0.5 2.5 0.5 2.5	% 400 mM Dibasic 0.5 2.5 4.5 0.5 2.5 4.5 0.5 2.5 2.5	% 1000 mM NaCl 0 0 15 15 15 30 30	95 95 80 80 80 65 65 65 65	2.55 6.44 7.72 2.39 6.18 7.45 2.46 6.04

Protein A Titer Method						s 🔊 🔊
 Use Autoblend in combination with the 		pH tab	les to	gener	ate th	e Protein
A Titer equilibration and elution conditi	ons:					
Mobile Phase A: 400 mM Sodium Phosphate Mo		H 2.0				
Mobile Phase B: 400 mM Sodium Phosphate Diba	asic					
Mobile Phase C: 1000 mM Sodium Chloride		G	radien	t Table	9	
Mobile Phase D: Water						
	Time	Flow (mL/min)	% A	% B	% C	% D
	Initial	1.5	0.9	4.1	30.0	65.0
	0.5	1.5	0.9	4.1	30.0	65.0
	0.7	1.5	4.3	0.7	30.0	65.0
	2.5	1.5	4.3	0.7	30.0	65.0
	2.6	1.5	0.9	4.1 4.1	30.0 30.0	65.0 65.0
	3.0	1.5	4.3	4.1	30.0	65.0
	3.6	1.5	4.3	0.7	30.0	65.0
	3.8	1.5	0.9	4.1	30.0	65.0
	5.0	1.5	0.9	4.1	30.0	65.0
						FUJIFILM
						Diesynth

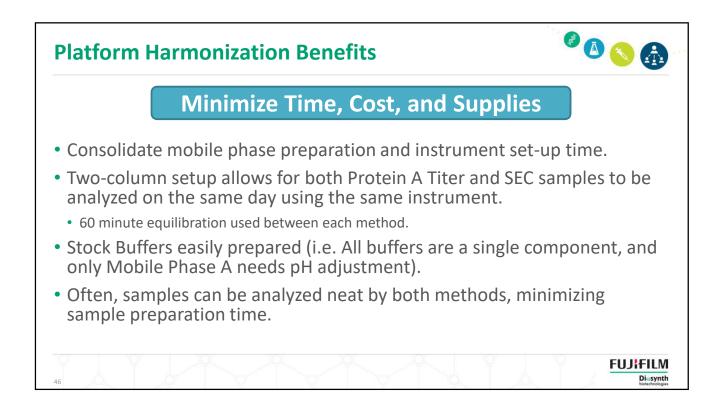

🖉 🚫 🔕

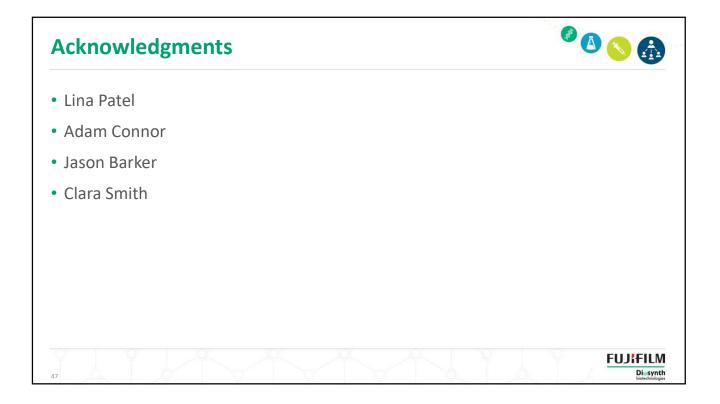
Size Exclusion Chromatography


• Fusion DOE Buffer Screening:


- <u>Parameters</u>: Varied pH (6.2-7.4), phosphate concentration (50-250 mM), and NaCl concentration (0.0-300 mM)
- Optimized Buffer: 150 mM Sodium Phosphate, 150 mM NaCl, pH 6.8

Final Concentratio of NaPO ₄	Final n Concentration of NaCl	% 400 mM Monobasic, pH 2.0	% 400 mM Dibasic	% 1000 mM NaCl	% Water	рН
150	0	18.7	18.8	0.0	62.5	6.29
150	0	12.5	25.0	0.0	62.5	6.72
150	0	5.0	32.5	0.0	62.5	7.33
150	150	18.7	18.8	15.0	47.5	6.10
150	150	12.5	25.0	15.0	47.5	6.56
150	150	5.0	32.5	15.0	47.5	7.20
150	300	18.7	18.8	30.0	32.5	6.00
150	300	12.5	25.0	30.0	32.5	6.50
150	300	5.0	32.5	30.0	32.5	7.10




Autoblend Buffer Table

