

Successful Modernization of a USP Monograph Method using Fusion QBD[®] Software resulted in an Optimized LC/MS Method and Eliminated the Need for a Separate GC Method

Richard Verseput

S-Matrix Corporation 1594 Myrtle Avenue Eureka, CA 95501 USA Phone: 707-441-0404 URL: www.smatrix.com

Presentation Outline

- 1. Rapid Chemistry System Screening
 - a. Automation Makes it Simple
 - b. Automation Maintains Data Integrity
- 2. Robust Method Optimization
 - a. UV & MS Spectra Based Peak Tracking
 - b. Robustness Modeling Throughout MODR
- 3. New Degradants Discovered
 - a. Automated Forced Degradation Study
 - b. Method Re-optimization

Presentation Outline

- 1. Rapid Chemistry System Screening
 - a. Automation Makes it Simple
 - b. Automation Maintains Data Integrity
- 2. Robust Method Optimization
 - a. UV & MS Spectra Based Peak Tracking
 - b. Robustness Modeling Throughout MODR
- 3. New Degradants Discovered
 - a. Automated Forced Degradation Study
 - b. Method Re-optimization

Gradient Time - 5 Levels: 10.0, 13.8, 17.5, 21.3, 25.0

pH – 5 levels: 2.7, 3.2, 3.7, 4.3, 5.0

Column Type – 4 Levels: BEH C18, BEH Shield RP18 HSS T3, CSH Phenyl Hexyl

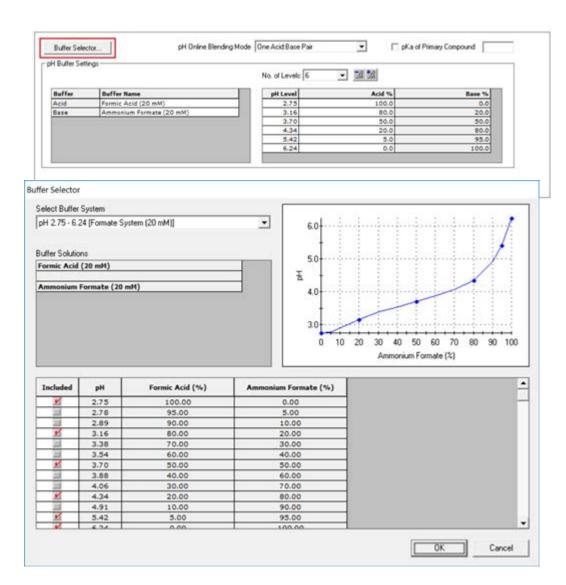
All Possible Combinations = $5 \times 5 \times 4 = 100$ methods

Fusion QbD Screening Design = 30 methods (plus 6 repeats)

> 3x efficiency.

Fusion QbD

Organizes the experiment for fully automated efficient execution:

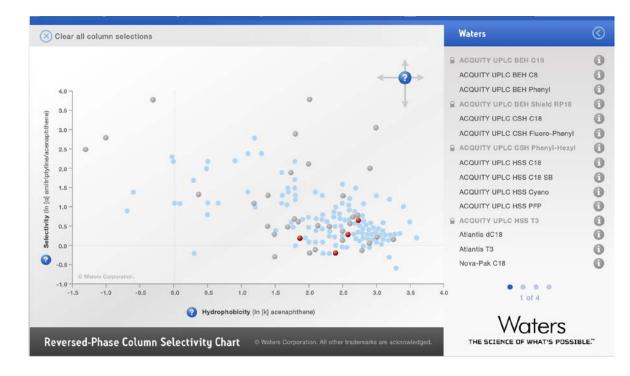

- Ramps on Temperature
- Blocks on Mobile Phase Chemistries
- Conditions Columns between Chemistry Changes

	Run No.	Gradient Time	pН	Column Type
1	Condition Column - 1	2	2.73	BEH C18
2	Condition Column - 2	2	2.73	BEH Shield RP18
3	Condition Column - 3	2	2.73	HSS T3
4	Condition Column - 4	2	2.73	CSH Phenyl Hexyl
5	1	25	2.73	BEH C18
6	2	10	2.73	BEH C18
7	3	25	2.73	BEH Shield RP18
8	4	10	2.73	BEH Shield RP18
9	5	25	2.73	HSS T3
10	6	10	2.73	HSS T3
11	7	17.5	2.73	CSH Phenyl Hexyl
12	8	17.5	2.73	CSH Phenyl Hexyl
13	Condition Column - 5	2	3.2	BEH C18
14	Condition Column - 6	2	3.2	BEH Shield RP18
15	Condition Column - 7	2	3.2	HSS T3
16	Condition Column - 8	2	3.2	CSH Phenyl Hexyl
17	9	21.3	3.2	BEH C18
18	10	13.8	3.2	HSS T3
19	11	17.5	3.2	BEH Shield RP18
20	12	17.5	3.2	CSH Phenyl Hexyl
21	Condition Column - 9	2	3.69	BEH C18
22	Condition Column - 10	2	3.69	BEH Shield RP18
23	Condition Column - 11	2	3.69	HSS T3
24	Condition Column - 12	2	3.69	CSH Phenyl Hexyl
25	13	17.5	3.69	BEH C18
26	14	17.5	3.69	BEH Shield RP18
27	15	17.5	3.69	HSS T3
28	16	17.5	3.69	CSH Phenyl Hexyl
29	17	25	3.69	CSH Phenyl Hexyl
30	18	10	3.69	CSH Phenyl Hexyl
31	19	17.5	3.69	BEH C18
22	20	17.5	2 60	DELI Chiala DD10

Auto-built for walk-away execution in the CDS.

Initial Chemistry Screening – Built In pH Automation

Built in Buffer System Titration Curves


Extremely Precise!

Initial Chemistry Screening – Built In Column Switching Automation

Fusion QbD Automation Supports Column Compartments with Multi-position Valves!

	Name	Valve Position		pH Upper Bound
1	BEH C18	Position 1 💌	2.0	14.00
2	BEH Shield RP18	Position 2 💌	2.0	14.00
3	HSS T3	Position 3 💌	2.0	14.00
4	CSH Phenyl Hexyl	Position 4 💌	2.0	14.00

– Column Settings.

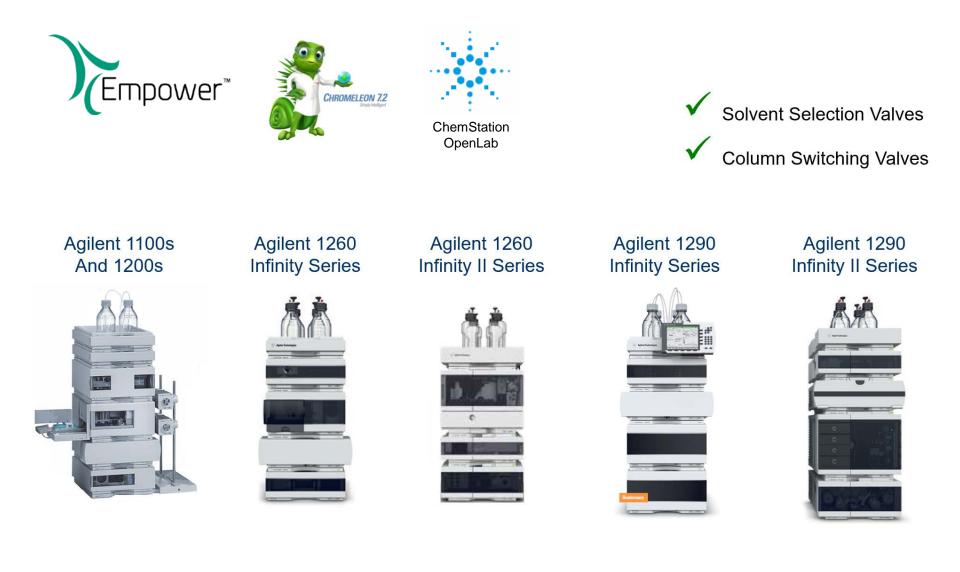
Solvent Selection ValvesColumn Switching Valves

Alliance HPLC

Acquity Binary

Acquity H-Class

Acquity Arc



Acquity UPC²

Fusion QbD Automation – Supports All Agilent LC Systems

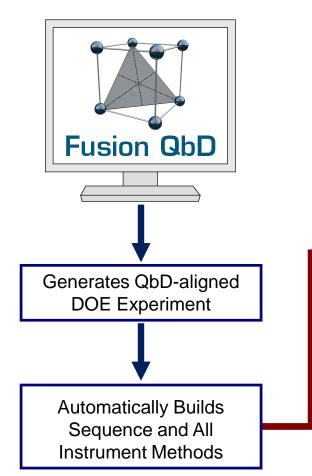
Fusion QbD Automation – Supports Thermo LC Systems

Solvent Selection Valves

Column Switching Valves

UltiMate LCs

Vanquish Horizon And Flex LCs


FDA Statement –

As long as the **data integrity** associated with the method development work matches what would be done in a formal Validation Robustness effort, then the results are acceptable.

USP Workshop – Enhanced Approaches for Analytical Procedure Lifecycle: An Alternative to Traditional Validation

(Sept. 24-25, 2018)

				С	hro	ma	atogra	aphy [Data	a So	ftw	<i>i</i> ar	e (CDS	S)		
															·		
e	ext	Mix pl	H in S-	Matrix - MD	Demo\LC Tu	torial - Sa	ample Workup as S	ystem/Administrator	- Sample Se	t Method Edit	or						
_		View															
F	6		3- 3-	· *a 🕾	X 🖬 💼	Apply Tab	le Preferences Sam	ple Set Method		-							
6	Vial	Inj Vol (uL)	# of Injs	Label	SampleName	Level	Function	Method Set / Report Method	Label Reference	Processing	Run Time (Minutes)	Data Start (Minutes)	Next Inj. Delay (Minutes)	Column Position	Auto Additions	SampleWeight	Dilutio
1							Condition Column				6,70	0.00	0.00	No Change			
2							Condition Column	Text Mix pH 001_017			0.10	0.00	0.00	No Change			
3							Equilibrate	Text Mix pH 001_017			3.00	0.00	7.95	No Change			
4	1	2.0	1	Unk-000-000	Blank - 1		Inject Samples	Text Mix pH 001_017		Normal	10.50	0.00	1.50			1.00000	1.00
;							Condition Column	Text Mix pH 001_001			0.10	0.00	0.00	No Change			
							Equilibrate	Text Mix pH 001_001			3.00	0.00	0.00	No Change			
	2	2.0	1	Unk-001-001	1.a.1.a		Inject Samples	Text Mix pH 001_001		Normal	10.50	0.00	1.50			1.00000	1.00
							Condition Column	Text Mix pH 001_002			0.10	0.00	0.00	No Change			
,							Equilibrate	Text Mix pH 001_002			3.00	0.00	0.00	No Change			
0	2	2.0	1	Unk-001-002	2.a.1.a		Inject Samples	Text Mix pH 001_002		Normal	10.50	0.00	1.50			1.00000	1.00
1							Condition Column				6.70	0.00	0.00	No Change			
2							Condition Column	Text Mix pH 001_003			0.10	0.00	0.00	No Change			
3							Equilibrate	Text Mix pH 001_003			3.00	0.00	0.00	No Change			
4	2	2.0	1	Unk-001-003	3.a.1.a		Inject Samples	Text Mix pH 001_003		Normal	10.50	0.00	1.50			1.00000	1.00
5							Condition Column				6.70	0.00	0.00	No Change			
6							Condition Column	Text Mix pH 001_004			0.10	0.00	0.00	No Change			
7							Equilibrate	Text Mix pH 001_004			3.00	0.00	0.00	No Change			
8	2	2.0	1	Unk-001-004	4.a.1.a		Inject Samples	Text Mix pH 001_004		Normal	10.50	0.00	1.50			1.00000	1.00
9							Condition Column	Text Mix pH 001_005			0.10	0.00	0.00	No Change			
0							Equilibrate	Text Mix pH 001_005			3.00	0.00	0.00	No Change			
	2	2.0	1	Unk-001-005	5.a.1.a		Inject Samples	Text Mix pH 001_005		Normal	10.50	0.00	1.50			1.00000	1.00
2							Condition Column				6.70	0.00	0.00	No Change			
3							Condition Column	Text Mix pH 001_006			0.10	0.00	0.00	No Change			
4							Equilibrate	Text Mix pH 001_006			3.00	0.00	0.00	No Change			

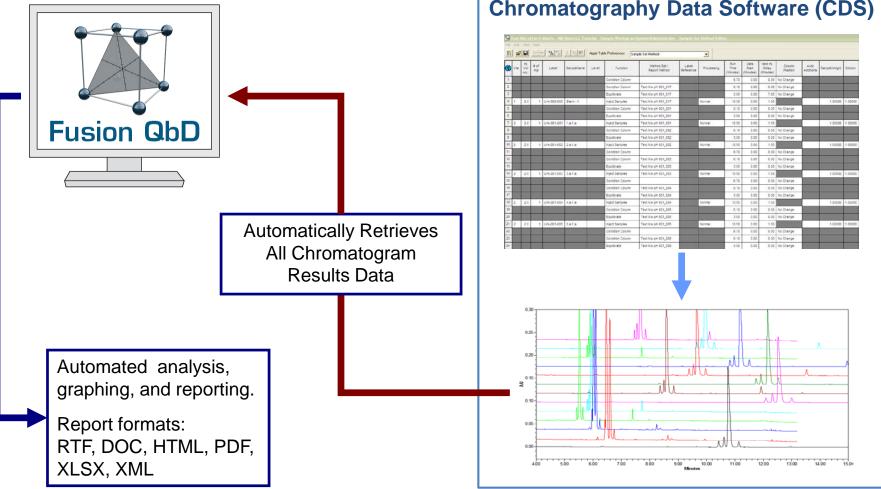
Eliminate Transcription Errors. Maintain Data in Audited Environment.

Fusion QbD Automation Supports Full Data Integrity

Full integration of **all e-record** and **all e-signature** features and functions required to support full 21 CFR 11 compliance.

Secure Workflow and Project Management systems.

Full audit trail, including **bi-directional auditing** of all data exchanges with the CDS.



💽 S-M	atrix\Test as System/Administrator -	Project					- (- X
<u>F</u> ile <u>E</u> o	lit <u>V</u> iew <u>T</u> ools <u>D</u> atabase <u>H</u> elj	þ	١	Method P	roperties		×	
Filter By:		Edit View		Name: Type: Last M	Information AAA_Demo Sample Set fodified By: Syster ock Locked	By:		
	ample Sets Injections Channels I	Methods Result Sets	Results		History	mod by.		
F	Method Name	Method Type	N) -	Method Name	Method Type		^
1	AAA_Demo	Sample Set	7/17/201	1	AAA_Demo	Sample Set	Created by Fusion QbD: C:\Program Files	
2	AAA_Demo 001_001	Method Set	7/17/201					
3	AAA_Demo 001_001	Instrument	7/17/201					
4	AAA_Demo 001_002	Method Set	7/17/201					
5	AAA_Demo 001_002	Instrument	7/17/201	<			>	
6	AAA_Demo 001_003	Method Set	7/17/201	Diffe	erences Print M	ethods Print Histo	ory Save As Current Audit Trail	
7	AAA_Demo 001_003	Instrument	7/17/201		OK	Cance	el <u>H</u> elp	
8	AAA_Demo 001_004	Method Set	7/17/201	V.20.11 A				
9	AAA_Demo 001_004	Instrument	7/17/2018	8:28:16 A	M PDT			
10	AAA_Demo 001_005	Method Set	7/17/2018	8:28:20 A	M PDT			
11	AAA_Demo 001_005	Instrument	7/17/2018	8:28:19 A	M PDT			~
166 total								11.

Audited Data Exchange – Assures Data Integrity

Fusion QbD Automation – Maintains Data Integrity

Chromatography Data Software (CDS)

Eliminate Transcription Errors. Maintain Data in Audited Environment.

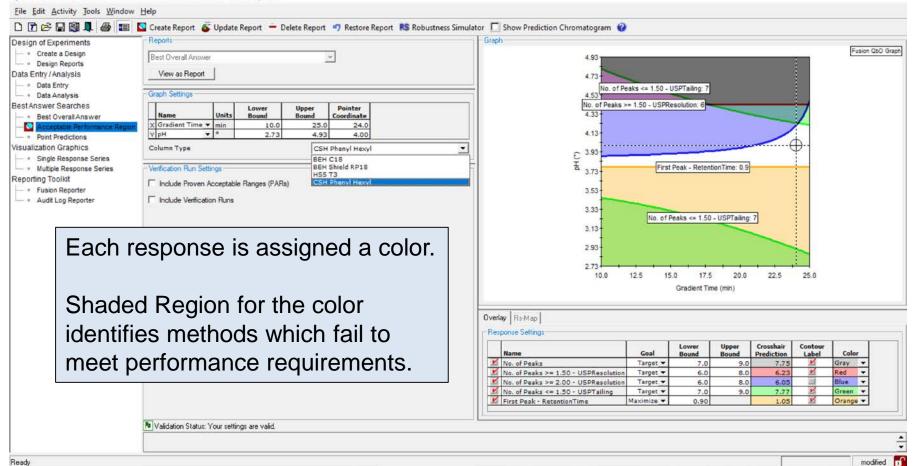
Fusion QbD Automation – Maintains Data Integrity

LC Method Development - LC Method D		I - Screening.smae						- 0
File Edit Activity Tools Window Help		~						
D Dresign of Experiments → Create a Design → Design of Experiments → Design Reports Data Entry / Analysis	enerate Audit Log	0					_	
Data Entry Data Analysis Best Answer Searches Best Overall Answer Acceptable Performance Region Point Predictions /isualization Graphics	Project: Pro	S-Matrix Corporation	C-08:00]			S-Matrix	×.	
Single Response Series Multiple Response Series Reporting Toolkit Fusion Reporter	Event Type: In	9 10:21:21 PST [UTC-08:0(nport Responses 20nse Settings)] - Adminis	strator				
	Setting		Val	ue			1	
	Target CDS			POWER				
	Empower Ver	sion		ower 3 Software Build 3471 SP	s Installed: Feature Release	4 DB ID: 2660033392		
	Empower Data		(loc					
	Empower Use		sys				1	
	Project Name			1 - Screen - 9_9_0				
	Result Set(ID)			D_RD1_Screen (1485)				
	Processed Ch	appel		A Ch1 225nm@4.8nm, Time offse	t by 0.020 mins			
	Activate Peak			checked	t by 0.020 mins.			
	Auto-imported			pht, RetentionTime, WidthAt50Pct	USDTailog WidthAfTappag	Area Area Development	-	
	Trend Respon			Resolution	, oseraling, monetrangen	IUSPRESULIUI, Area		
		togram Trace Data		ecked				
		on Chromatogram Data		cked				
	Total Import Tir	-		00:18				
	Locale	110		lish (United States)				
	Response D	ata	city	ian (onico otalica)			1	
		1		No. of Peaks >= 1.50 -	No. of Peaks >= 2.00 -	No. of Peaks <= 1.50	1	
	Run No.	Result ID	No. of Peak		USPResolution	- USPTailing		
	1	1748		8 2	2	0		
	2	1750		6 3	3	0		
	3	1826		8 5	5	3		
	4	1824		8 4	4	2		
	5	1756		7 2	2	0		
						1 c	of 6	
eady								modified

Audited Data Exchange – Assures Data Integrity

Fusion QbD Trend Responses –

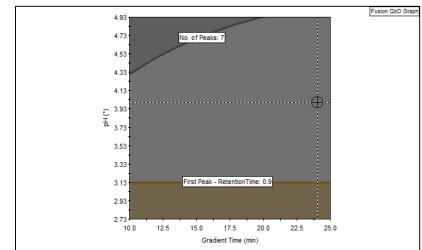
Automatically Derived from Integrated Chromatograms:

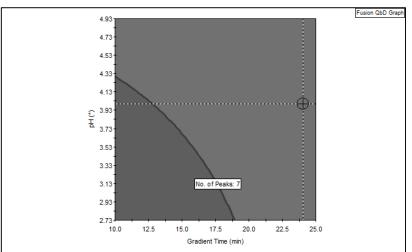

- > No. of Separated Peaks
- No. of Baseline Resolved Peaks
- > No. of Peaks with Good Tailing
- Resolution of the Main Peak
 - from the immediately *earlier* eluting peak
 - from the immediately *later* eluting peak

Chemistry Screening Study – Acceptable Performance Region

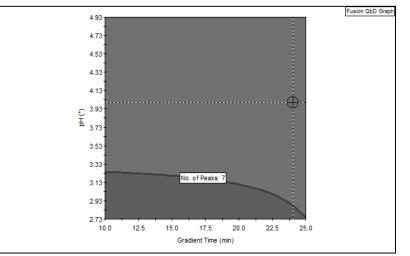
💯 LC Method Development - LC Method Development Tutorial - Screening.smae

- 0 X





Chemistry Screening Study – Acceptable Performance Region


CSH Phenyl Hexyl Fusion QbD Grap 4.93 4.73 No. of Peaks <= 1.50 - USPTailing: 7 4.53 No. of Peaks >= 1.50 - USPResolution: 4.33 4.13 Ð 은 ^{3.93} 불 _{3.73} First Peak - RetentionTime: 0.9 3.53 3.33 No. of Peaks <= 1.50 - USPTailing: 7 3.13 2.93 273 12.5 20.0 22.5 25.0 10.0 15.0 17.5 Gradient Time (min)

BEH Shield RP18

HSS T3

BEH C18

Presentation Outline

- 1. Rapid Chemistry System Screening
 - a. Automation Makes it Simple
 - b. Automation Maintains Data Integrity
- 2. Robust Method Optimization
 - a. UV & MS Spectra Based Peak Tracking
 - b. Robustness Modeling Throughout MODR
- 3. New Degradants Discovered
 - a. Automated Forced Degradation Study
 - b. Method Re-optimization

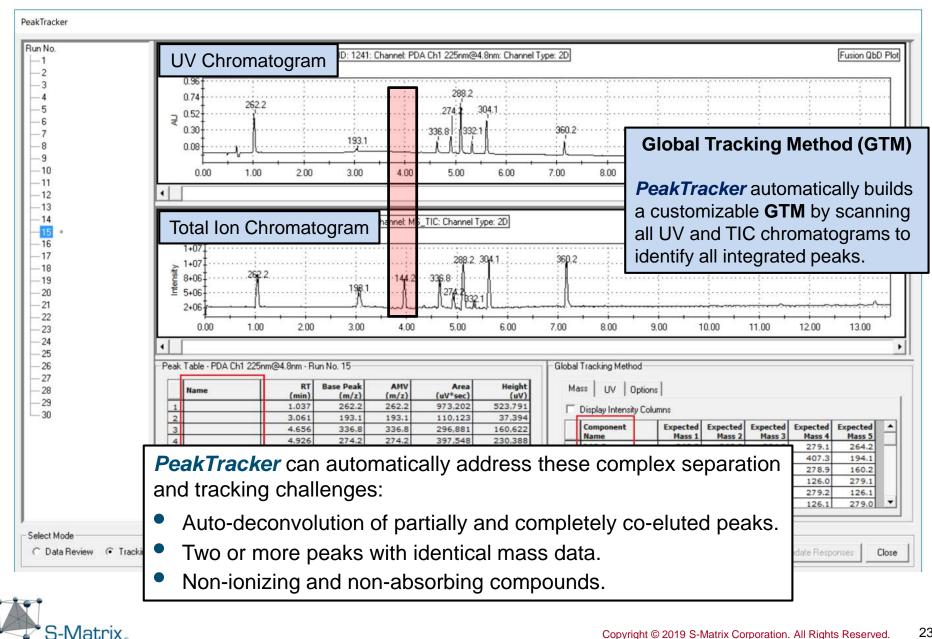
Pump Flow Rate – 3 Levels:	0.35, 0.45, 0.55
Gradient Time* – 3 Levels:	8.0, 12.0, 16.0
Oven Temp – 3 levels:	40.0, 45.0, 50.0
pH – 3 levels:	3.6, 3.9, 4.2
Column Type – Constant:	CSH Phenyl Hexyl

All Possible Combinations = $3 \times 3 \times 3 \times 3 = 81$ methods

Fusion QbD Optimization Design = 25 methods (plus 5 repeats)

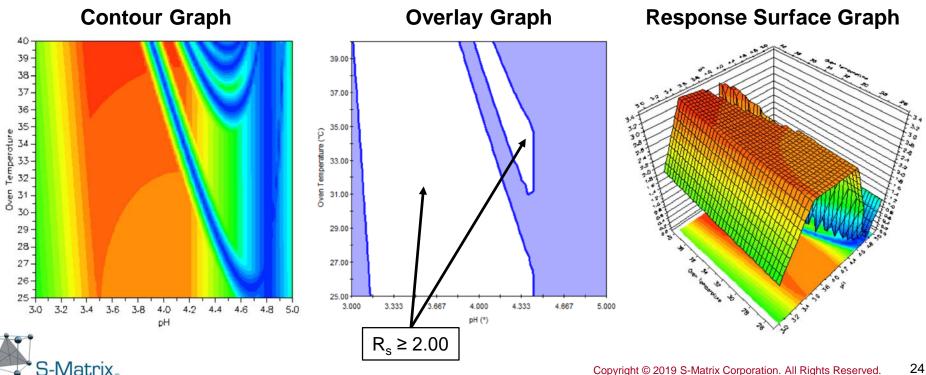
> 3x efficiency.

* - levels adjusted for new endpoint of 50% organic

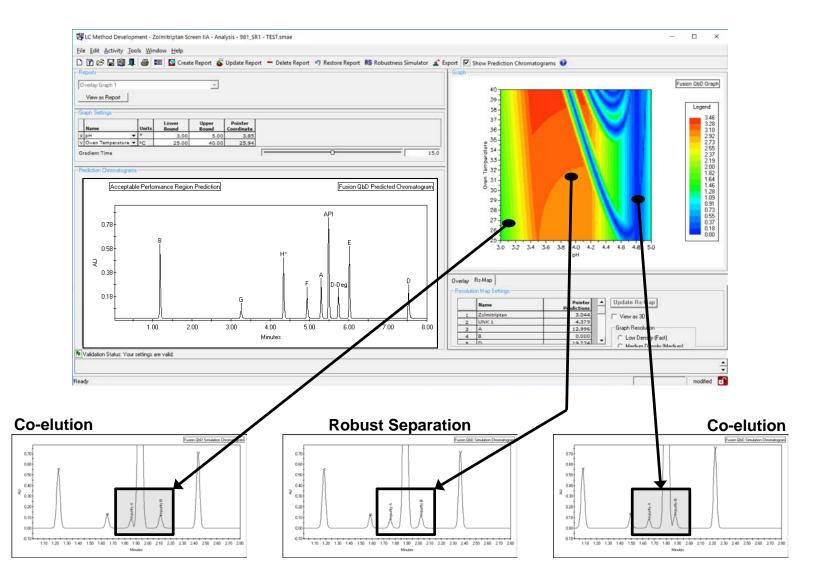

Fusion QbD – *PeakTracker*™

Select a P	roject and	Result Set
------------	------------	-------------------

Find Filter Reset	Result Set Name	ID	Date	Sa	mple Set	
	RD2 Optimization	9001	6/4/2019 8:48:34 AM ED	r RC	2 Optimization	r.
Projects Customers Distributors						
		Select F	Processed Channel:			
E FMD Tutorial - 9_9_0	Fetch Selected Result Set	PDA C	h1 225nm@4.8nm, Time offs	etby 0.0	20 mins.	
	Result(s) for Import					
RD2 - Optimization - 9_9_0	Sample	ID	Date	Туре	Channel ID	Result ! /
 FMV - A_L_R Internal Development RD1 - Demo Screening Expt RD2 - Demo Optimization Expt Test 	1 10 11 12 13 14 15 16 < PeakTracker Data Import Select Raw PDA Channet: None Selected	9155 9048 9191 9058 9063 9201 9073 9078	6/4/2019 8:50:34 AM 6/4/2019 8:48:51 AM 6/4/2019 8:48:51 AM 6/4/2019 8:77:34 AM 6/4/2019 8:48:56 AM 6/4/2019 8:48:56 AM 6/4/2019 8:48:59 AM 6/4/2019 8:49:00 AM 6/4/2019 8:49:00 AM		6737 6812 6820 6828 6836 6844 6852 6860	9001 9001 9001 9001 9001 9001 9001 9001
ypes (logged in as 'Owner')	Spectra Extraction Points Leading (%) 30.00	Trailing (%)	30.00 Threshold S MS Intens	_	100000	
ypes (logged in as owner)	Select Processed MS Chann	iel:			Track Non-a	bsorbing Pea
	QDa Positive Scan MS TIC	Smoothed b	y 59 point Savitzky-Golay Filt	er. (QDa F	ositive(+) Scar	(100.00-12)



Robust Method Optimization – PeakTracker



Fusion QbD – Rs-Map Response

Fusion QbD now uses its hyper-accurate modeling technologies to predict USP or EP Resolutions for all peaks for any method conditions using standard Resolution equations. Graphical and numerical displays update in real time as you change method conditions.

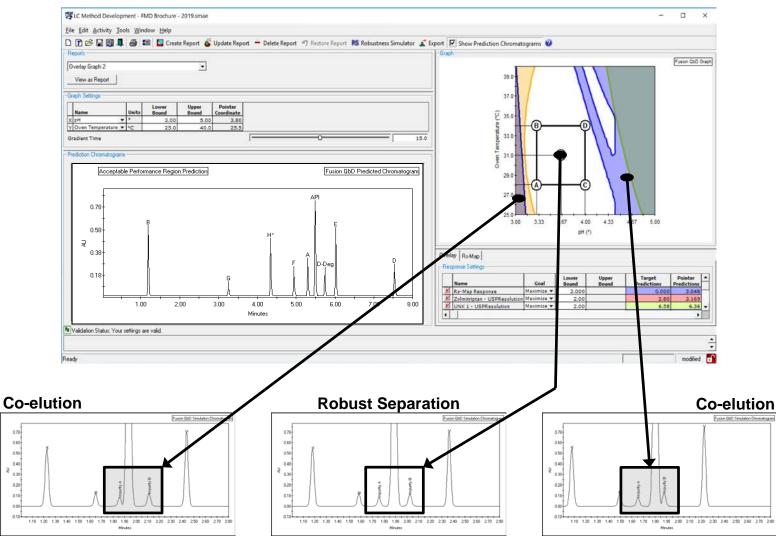
Robust Method Optimization – Rs-Map Response

Presentation Outline

- 1. Rapid Chemistry System Screening
 - a. Automation Makes it Simple
 - b. Automation Maintains Data Integrity
- 2. Robust Method Optimization
 - a. UV & MS Spectra Based Peak Tracking
 - b. Robustness Modeling Throughout MODR
- 3. New Degradants Identified
 - a. Automated Forced Degradation Study
 - b. Method Re-optimization

Robust Method Optimization – Robustness Modeling Throughout MODR

				Robu	stness Simula	ator - Select R	s Responses for Ir	ndividual Comp	ounds	×
Robust	ness Simulator									
Cp				Include	Response					
C _{pk} Us	se C _{pk} when one of the two cases bel	ow applies to the re	esponse.		G - Rs-Map	USP Resolution	n			
Cpm	1. The response goal is Maxim				H* - Rs-Ma	ap USP Resoluti	on			
Cpkm	Lower specification limit, and values are near the absolute		dicted response		F - Rs-Map	USP Resolution	n			
					A - Rs-Map	USP Resolution	n			
	 The response goal is Minimi Upper specification limit, and 				API - Rs-Ma	ap USP Resolut	ion			
	values are near the absolute		licted response		D-Deg - Rs	-Map USP Reso	olution			
No	ote:				E - Rs-Map	USP Resolution	1			
	C _{ni} is computed when only a	lower specification i	s entered.		D - Rs-Map	USP Resolution	n			
Response S	Settings					Se	lect All Sele	ct None	ОК	Cancel
Enabled	Response	Robustness	Specification Limit Delta (±)		-USL	Target	Additional	Additional Erro Amount (±1σ Value)	r	
	B - RetentionTime	Cpk ~		0.900		Target		(-10 (100))		
6	A - Rs-Map USP Resolution	Cpk v		1.500			-6			
	API - Rs-Map USP Resolution	Cpk 🗸		1.500						
	D-Deg - Rs-Map USP Resolution	Cpk 🗸		1.500						
	E - Rs-Map USP Resolution	Cpk 🗸		1.500						
Select A	All Select None Restore	Add Individ	lual Rs Responses.						~	


Robustness is calculated for each key performance metric.

Robust Method Optimization – Robustness Modeling Throughout MODR

• Mean Performance and Robustness Throughout MODR.

S-Matrix.

• Include Performance Requirements for Critical Peaks and Peak Pairs.

Copyright © 2019 S-Matrix Corporation. All Rights Reserved. 28

Monte Carlo Robustness Simulation

"Statistical treatments (e.g., *Monte Carlo simulations*) can help evaluate the effects of uncertainty."

Points to Consider for Design Space – A Regulatory Perspective, Elaine Morefield, Ph.D., 2012 Annual Meeting, AAPS.

Statistical Robustness Metrics

The FDA has stated that accepted process capability indexes such as C_p , C_{pk} , C_{pm} , and C_{pkm} are also part of the QbD toolset.

US FDA, Quality by Design: Objectives, Benefits, and Challenges, Lawrence X. Yu, Ph.D., 2012 Annual Meeting, AAPS.

Characterizing Robustness Throughout the Design Space

"Statistical Confidence Shown Throughout the MODR.

QbD Considerations for Analytical Methods – FDA Perspective, Sharmista Chatterjee, Ph.D., 2013 Annual Meeting, IFPAC.

Vatrix

John F. Kauffman, Ph.D. and Daniel J. Mans, Ph.D., "*Experimental Design and Modeling to Improve HPLC Method Performance for Small Molecules*", FDA Division of Pharmaceutical Analysis, CASSSCMC Strategy Forum Europe 2015

30

Regulatory Perspective – 2018

Analytical Procedure Lifecycle Management

European Compliance Agency, Analytical Quality Control Group, July 2018, Final_r1

3. Process Capability

Process capability refers to the performance of the process when it is operating under statistical control. Two capability indices are usually computed: C_p and C_{pk} in a similar way as was described with P_p and P_{pk} . However, C_p measures the **potential** capability in the process, if the process was centred, while C_{pk} measures the actual capability in a process which is off-centre or biased. If a process is centred, then $C_p = C_{pk}$.

$$C_{pk} = \min\left[\frac{U - \bar{X}}{3S_w}, \frac{\bar{X} - L}{3S_w}\right]$$
(1.5)

The critical thing to note is that whilst the formulae for P_{pk} and C_{pk} look very similar, the standard deviation used to calculate the reference interval for C_{pk} is not S_t but S_w .

 S_w is the within batch standard deviation (called the within sub group standard deviation in ISO) not the overall process standard deviation. It is usually estimated from a Shewhart mean and range control chart using the formula

ECA _AQCG_ SOP 03_APLM_v1.0_July 2018_Final_r1

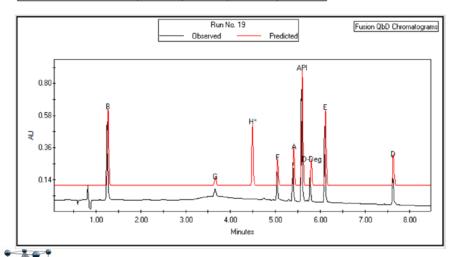
Page 78 of 80

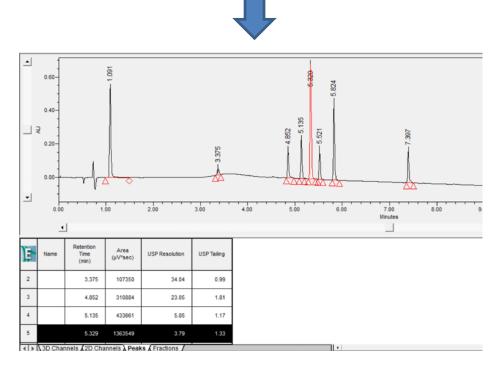
Robust Method Optimization – Optimized Method Predictions

Predicted Point - 19

Variable Settings

Variable	Level Setting
Pump Flow Rate	0.450
Gradient Time	12.0
Oven Temperature	45.0
рН	3.90

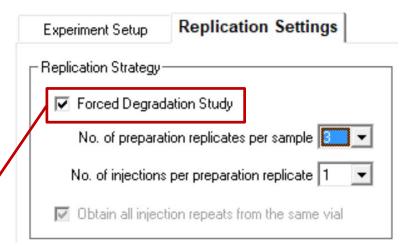

S-Matrix


Internal Verification – Predicted vs. Observed

Predicted Results

Response Name	Predicted Result	Observed Result	-2 Sigma Conf. Limit	+2 Sigma Conf. Limit
Rs-Map Response	3.756	3.920		
B - Rs-Map USP Resolution	0.000	0.000		
G - Rs-Map USP Resolution	37.981	37.521		
H* - Rs-Map USP Resolution	13.532	13.541		
F - Rs-Map USP Resolution	11.242	11.781		
A - Rs-Map USP Resolution	7.539	7.649		
API - Rs-Map USP Resolution	3.760	3.920		
D-Deg - Rs-Map USP Resolution	3.756	3.945		
E - Rs-Map USP Resolution	6.465	6.899		
D - Rs-Map USP Resolution	29.898	30.575		
B - RetentionTime	1.27	1.27	1.25	1.29

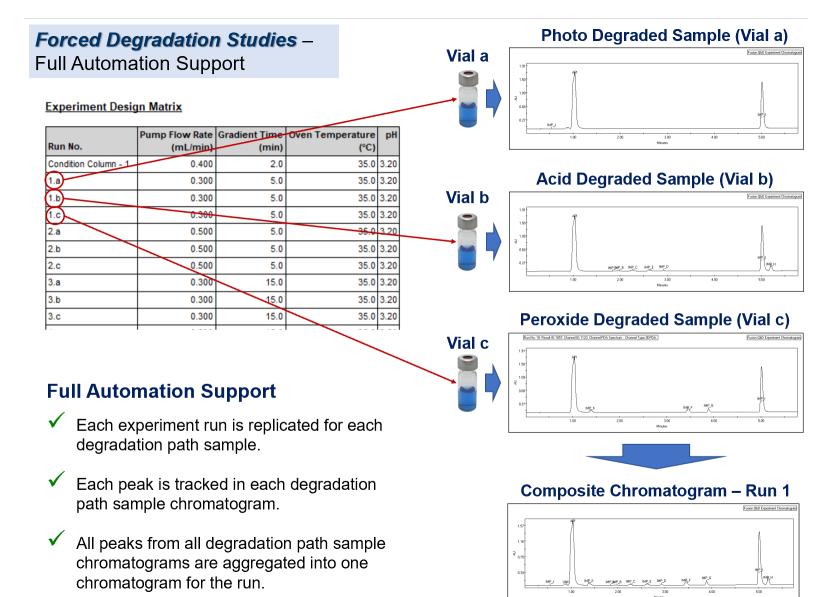
External Verification – Export to CDS


32

Presentation Outline

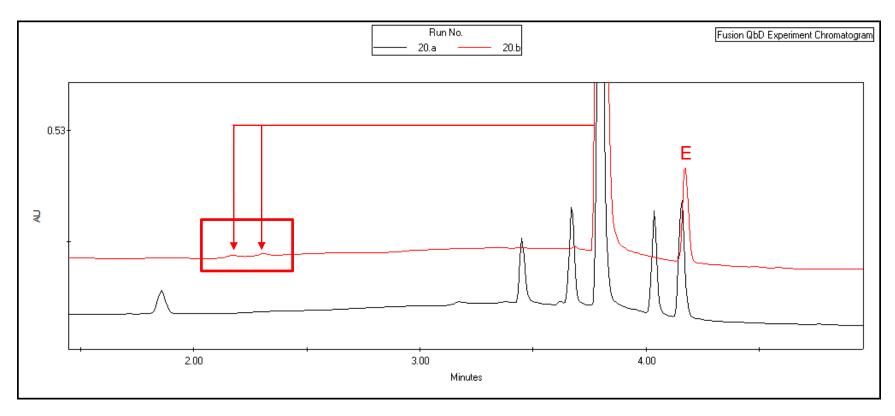
- 1. Rapid Chemistry System Screening
 - a. Automation Makes it Simple
 - b. Automation Maintains Data Integrity
- 2. Robust Method Optimization
 - a. UV & MS Spectra Based Peak Tracking
 - b. Robustness Modeling Throughout MODR
- 3. New Degradants Discovered
 - a. Automated Forced Degradation Study
 - b. Method Re-optimization

Fusion QbD – Forced Degradation Studies


Fusion QbD enables users to set up an experiment execution protocol in which each experiment run will be repeated according to user-specified Replication Strategy which can be any combination of Sample Preparation and/or Injection replicates – with the replicates taken from the same vial or assigned different vials.

S-Matrix has now created a new "Forced Degradation Study" mode to support experiments in which the different Sample Preparation replicates represent different degradation paths such as photo degradation, acid degradation, and peroxide degradation. This activates an entirely new technology which aggregates peak data from the replicates for each run into a "Composite Chromatogram" data set for the run to be used in robust method optimization and prediction chromatogram visualization.

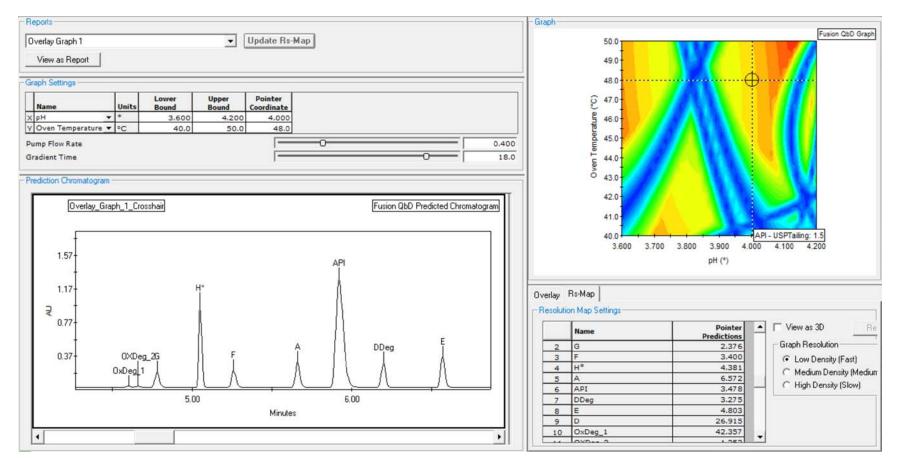
New Degradants Identified – Forced Degradation Study

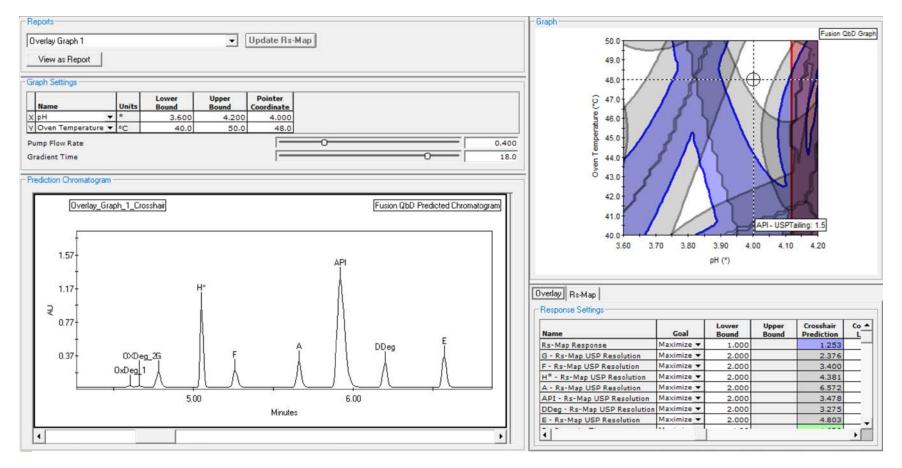


Forced Degradation Study (FDS) – 2 New Degradants Identified

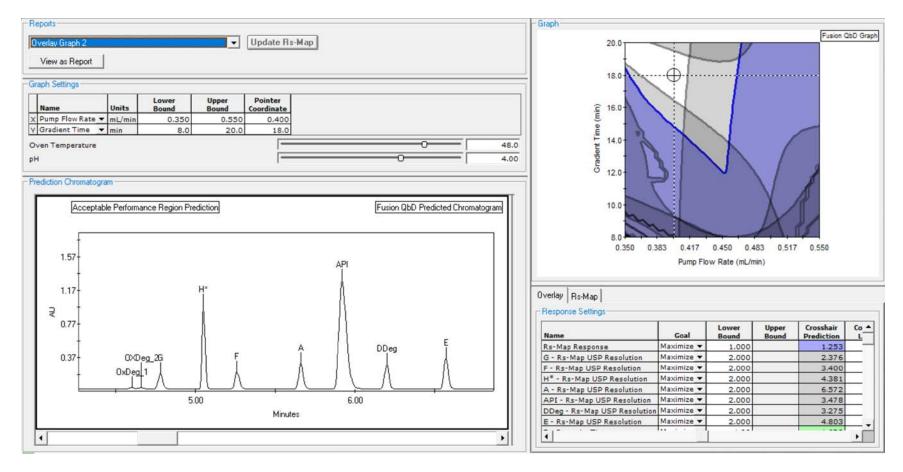
Black Trace – Undegraded Sample (Note – API material contained Related Compound "E")

Red Trace – Peroxide Degraded API (generated 2 new degradants)


Chromatogram formatting – zoom, stack, offset, and annotate to get best presentation view.


Fusion QbD automatically creates a data set of composite chromatograms

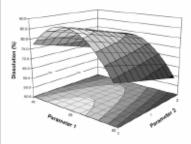
for peak tracking, modeling, and simulation.



Overlay lets you include mean performance and robustness for any critical performance characteristic across the MODR.

Switch graphed and non-graphed variables - find most robust method overall.

Fusion QbD – Completely Aligned with ICH Q8(R2)


dution (%


81.0.81.0 1.01.0.85.0 1.11.0.45.0 1.12.0.45.0 1.01.0.45.0 1.01.0.45.0 1.01.0.45.0 1.01.0.45.0

ICH Q8(R2) – Page 22

C. Presentations of Design Space

Example 1: Response graphs for dissolution are depicted as a surface plot (Figure 1a) and a contour plot (Figure 1b). Parameters 1 and 2 are factors of a granulation operation that affect the dissolution rate of a tablet (e.g., excipient attribute, water amount, granule size.)

from example 1a.

Figure 1a: Response surface plot of dissolution as a function of two parameters of a granulation operation. Dissolution above 80% is desired.

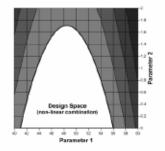


Figure 1c: Design space for granulation parameters, defined by a nonlinear combination of their ranges, that delivers satisfactory dissolution (i.e., >80%).

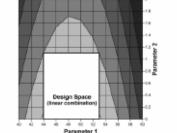


Figure 1b: Contour plot of dissolution

Figure 1d: Design space for granulation parameters, defined by a linear combination of their ranges, that delivers satisfactory dissolution (i.e., >80%).

www.smatrix.com

Copyright © 2019 S-Matrix Corporation. All Rights Reserved. 41