

Session #: O24-00 Track: Pharmaceutical

Impacts of USP Modernization Initiatives

on Analytical Development

for Drug Products

Richard Verseput S-Matrix Corporation www.smatrix.com

© 2023 S-Matrix Corporation. All Rights Reserved.

Abstract

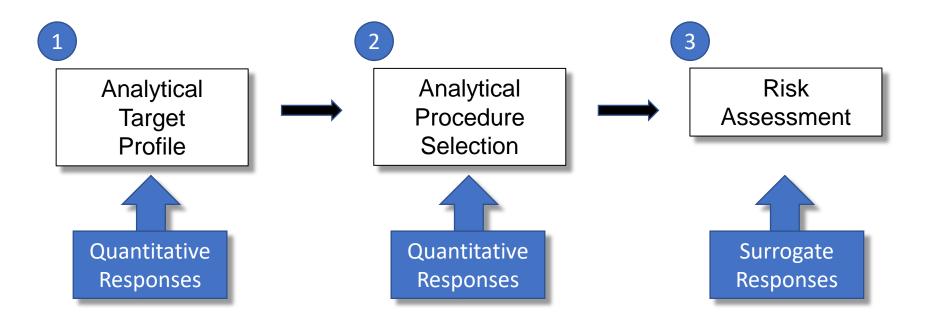
This presentation will describe the following key elements within the USP <1210> and USP <1220> guidances which provide a new framework and workflow for analytical procedure development:

1. Analytical Target Profile (ATP)

- a. A specification negotiated with Production.
- b. A bridge linking qualitative and quantitative method development data.

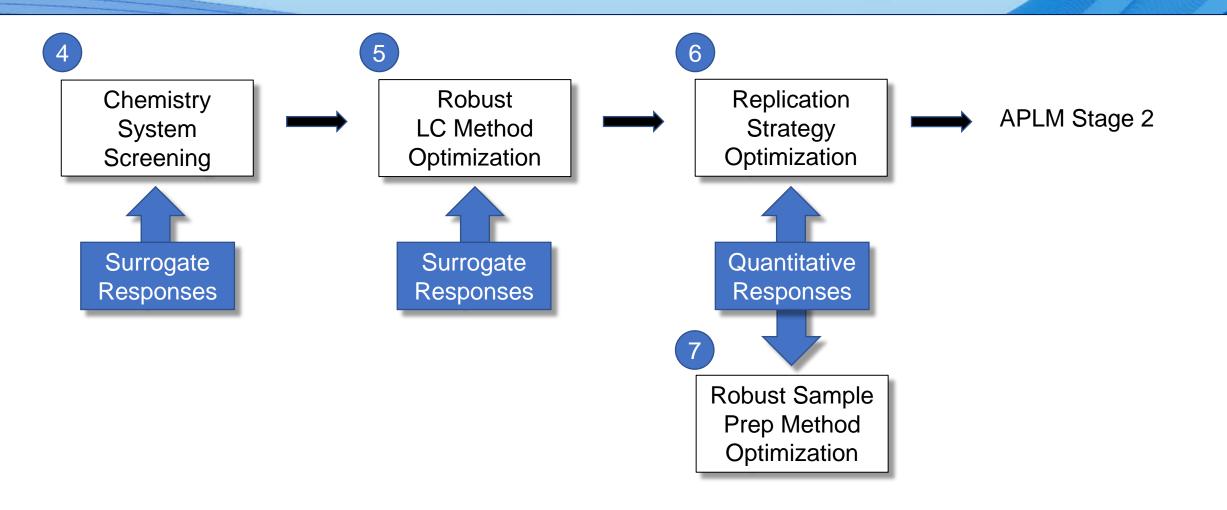
2. Method Operable Design Region (MODR)

- a. Establishing a true, multi-dimensional, robust MODR.
- b. Capturing the Analytical Control Strategy knowledge required for APLM Stage 3.


3. Replication Strategy Optimization

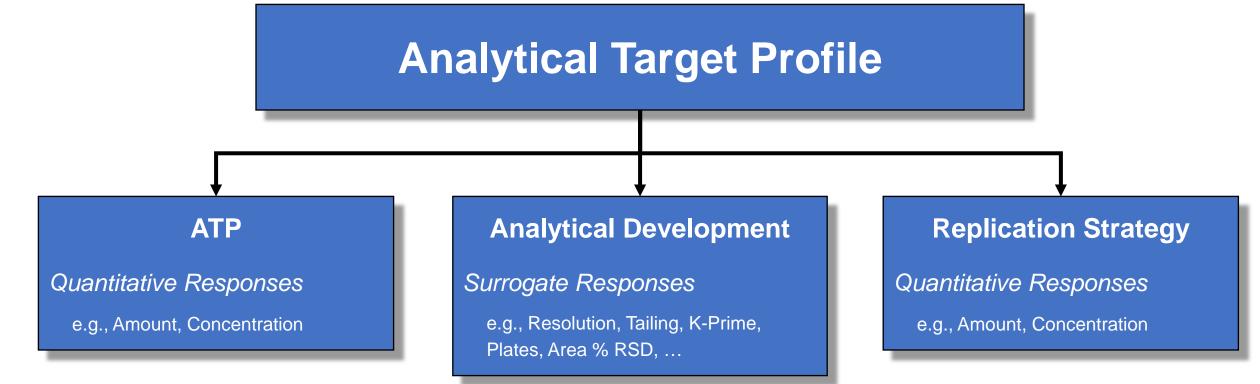
Identifying the most efficient strategy for generating Reportable Values (a.k.a. Reportable Results) which meet ATP Performance Requirements.

These key elements will be described within the context of developing a robust UHPLC method.



APLM Stage 1 Workflow

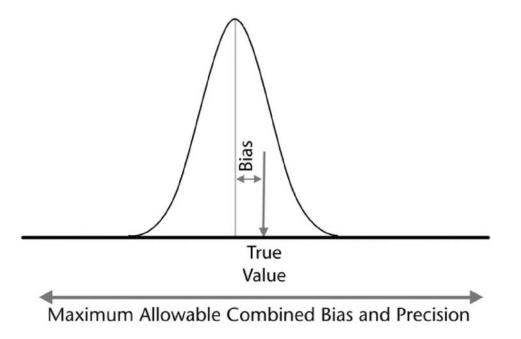
APLM Stage 1 Workflow - Continued


(7

Run a Sample Preparation Optimization study when the minimum Replication Strategy required to meet the

method precision requirements in the ATP is not feasible, and Sample Prep is the major source of error.

ATP as a Bridge

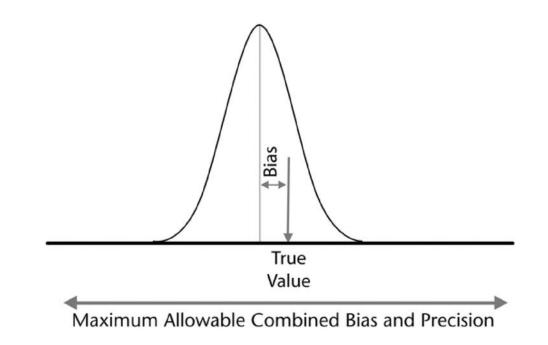


ATP for Analytical Procedure

USP (1220) Analytical Procedure Life Cycle

Analytical Target Profile (USP <1220>

The procedure must be able to **quantify** [analyte] in a range from [A units] to [B units] in the [description of test article] in the presence of [x, y, z] so that the **distribution of the total analytical error of the reportable value** falls within the **total allowable analytical error range** of ± [C%].



Total Analytical Error (TAE)

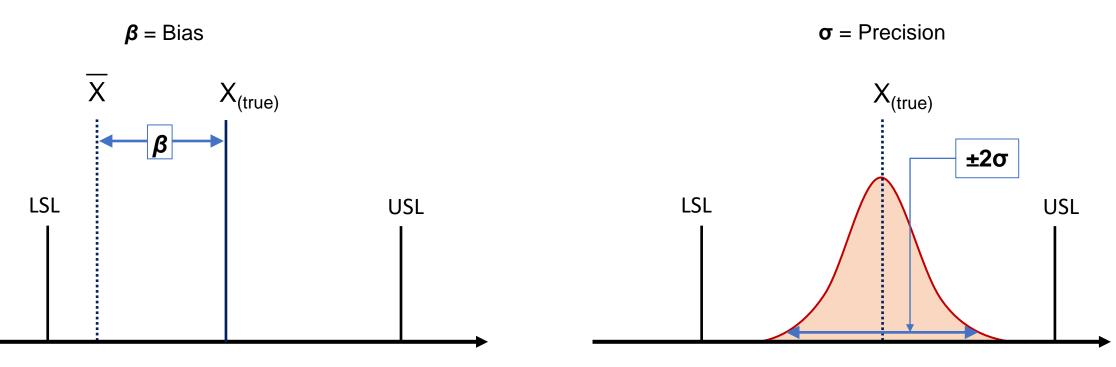
USP (1220) Analytical Procedure Life Cycle

Total Analytical Error (TAE):

The overall error in a test result that is attributed to imprecision and inaccuracy; TAE is the combination of both systematic error of the procedure and random measurement error.

Two Critical Considerations:

- 1. The Integration of Precision and Bias into a single Interval Metric USP <1210>.
- 2. The Negotiated Total Analytical Error (TAE) Allowance for the Analytical Method.

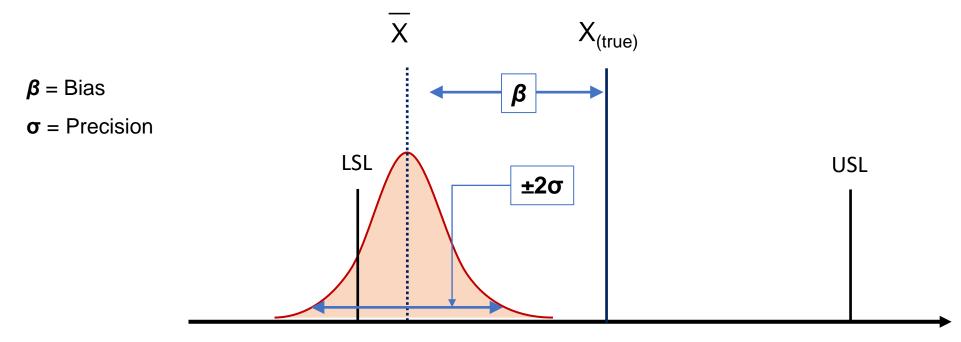


3. ACCURACY AND PRECISION

USP (1210) Statistical Tools for Procedure Validation

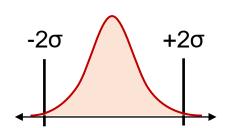
3.2 Combined Validation of Accuracy and Precision

An underperforming method can <u>pass</u> System Suitability for the Critical Method Attribute being evaluated when Accuracy (β – bias) and Precision (σ – precision) are assessed separately = High Risk Approach.

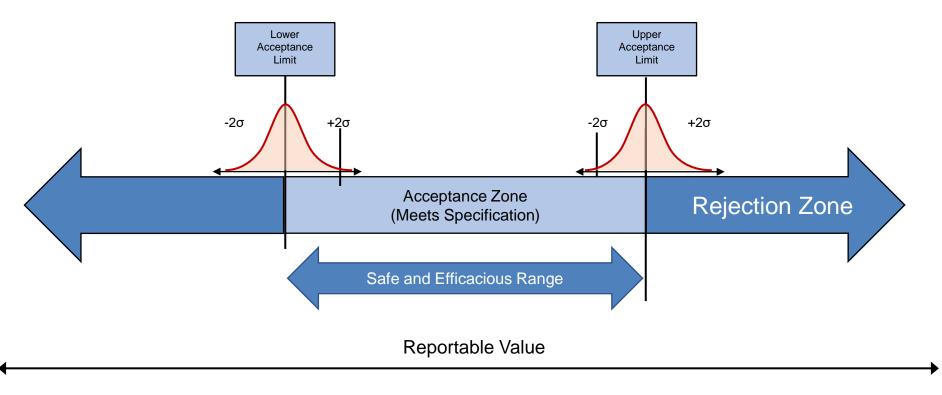


3. ACCURACY AND PRECISION

USP (1210) Statistical Tools for Procedure Validation

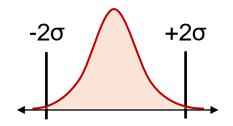

3.2 Combined Validation of Accuracy and Precision

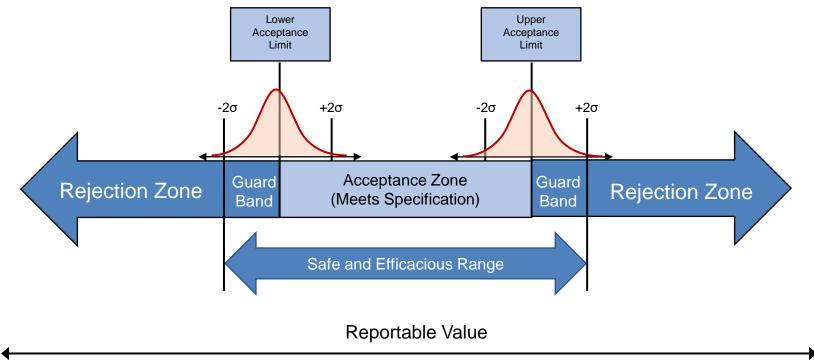
As the illustration below shows – the method does not have acceptable System Suitability performance for the Critical Quality Attribute (CQA) being tested when both Accuracy (β – bias estimation) and Precision (σ – variation estimation) are assessed together = Low Risk Approach.



Guard Bands acknowledge the presence of Bias and Precision Limits and the need to incorporate a characterized TAE into the "Acceptance Zone".

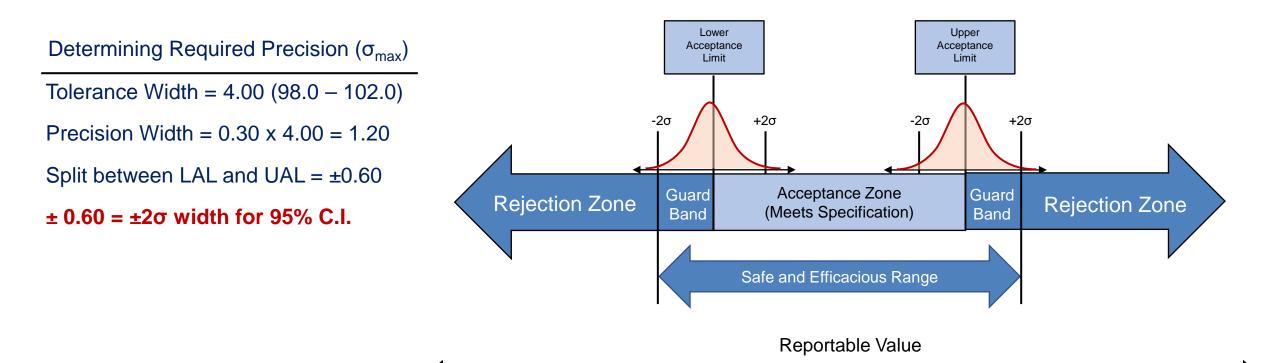
Total Analytical Error


Distribution



Acceptance Zone is narrower to incorporate the characterized TAE.

Total Analytical Error Distribution



Production: Amount of Precision-to-Tolerance (P/T) Ratio Available for the Analytical Method

- API method has a tolerance range of 4.0% (i.e., 98.0% to 102.0%)
- Analytical method allowance = 30% of the P/T ratio using a 95% confidence interval.

ATP for Analytical Procedure

USP (1220) Analytical Procedure Life Cycle

$$2\sigma_{\text{max}} = 0.60$$

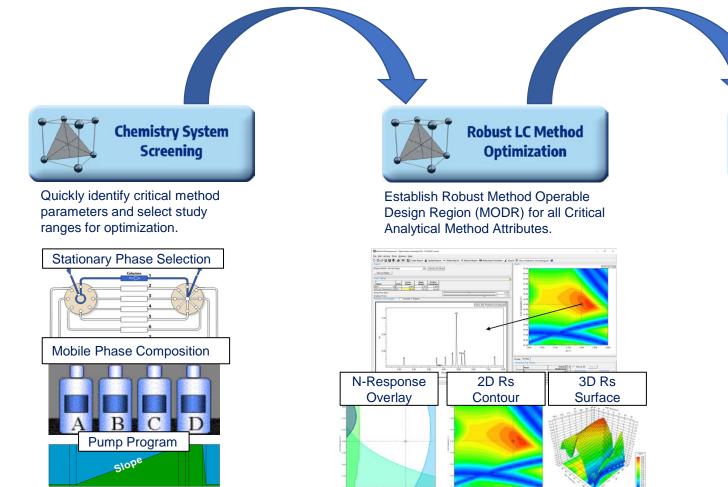
Selected Analytical Procedure = UHPLC:

Combined Bias and Precision Allowance Becomes the ATP Quantitation Performance Metric:

- Robust Method Optimization
- Replication Strategy Optimization

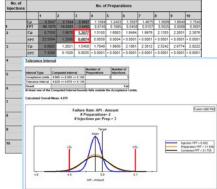
Sources of Risk for Bias and Variation

Element	Presumed CMPs CMAs							Category (C, N, X)
Liement		Resolution USP	S/N	Tailing USP	Area % RSD - API	K-Prime - 1st Peak	K-Prime - Last Peak	(0, 11, 17)
	Column Type	5	1	1	3	5	5	X-S
Chamistar	Strong Solvent	5	1	1	3	5	5	X-S
Chemistry	Aqueous solvent	5	5	5	1	5	5	X-S
	pН	5	5	5	3	5	5	X-S-0
	Pump Flow Rate	3	1	5	3	5	5	X-0
Process	Injection Volume	3	5	3	5	1	1	С
	Oven Temperature	5	1	3	3	5	5	X-0
Gradient	Initial Hold Time	1	1	1	1	5	1	С
Program	Gradient Slope	5	1	5	3	5	5	X-S-0
	Wavelength	5	5	1	5	1	1	С
Detection	Sampling Rate	3	5	1	5	1	1	С
	Precision	1	3	1	3	1	1	С


C = Controlled Factor, N = Noise Factor, X = eX perimental Factor (S = Screening, O = Optimization)

Impact Severity Low = 1 Medium = 3 High = 5

General Method Development Workflow

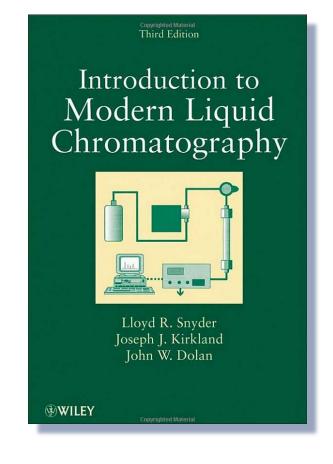

USP (1220) Analytical Procedure Life Cycle

Define % contributions of Preparation Error and Injection Error to Overall Method Precision (Total Analytical Error).

Select optimal Replication Strategy.

Full Experiment Automation with the CDS.

Full 21 CFR 11 Compliance with Bi-directional Audit Trail



Chemistry System Screening "For methods involving a large number of samples, and where adequate resolution must be combined

With run times that are as short as possible, it can be profitable to

spend more time initially on "scouting" experiments.

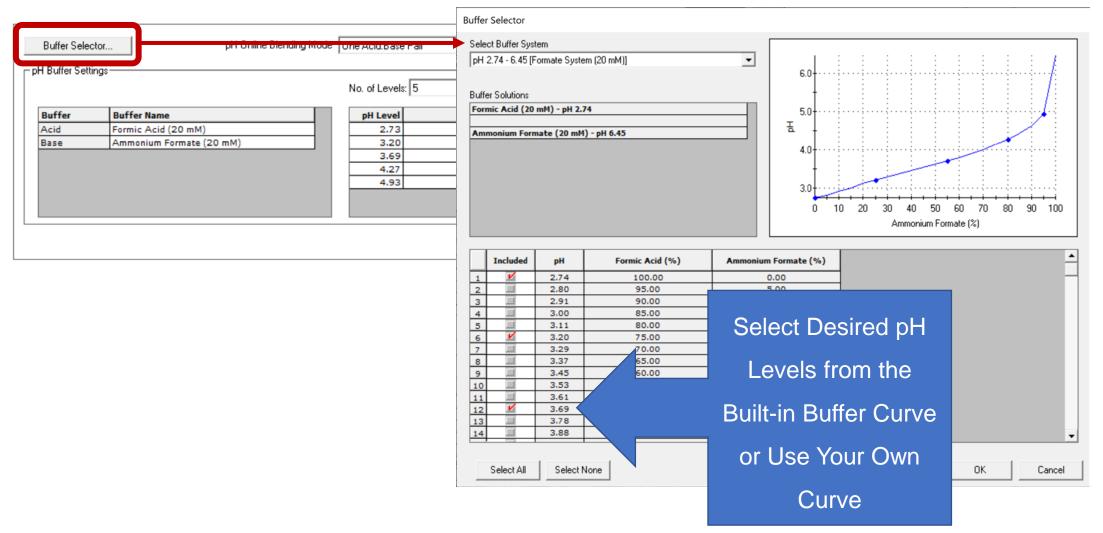
- Different columns
- Different **B-solvents**
- Variations in **pH** and **temperature**
- Use of **Gradient elution** during the experiments can help avoid the need to separately optimize values of %B for each variable studied."

Snyder, Kirkland, and Dolan. (2010). Introduction to Modern Liquid Chromatography, 3rd Edition; John Wiley & Sons, Inc., Hoboken, New Jersey (p. 67)

Full utilization of Quaternary Pumps, Solvent Selection Valves, and Column Switching Valves. Study <u>any combination</u> of LC parameters which can <u>interactively effect</u> method performance!

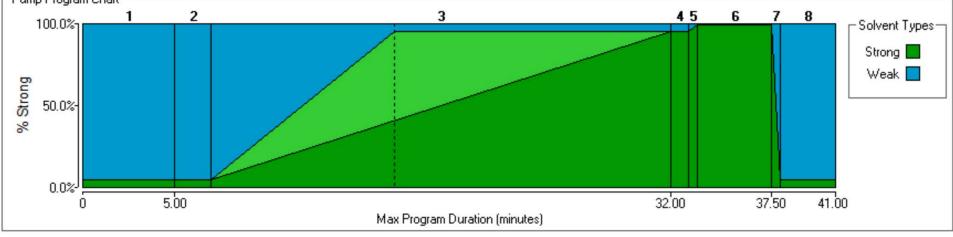
- Isocratic and Gradient Methods
- Strong Solvent Type
- Any pump program steps e.g.
 - Equilibration Time & %
 - Isocratic Hold Time & %
 - o Gradient Time / Slope
 - Initial / Final Hold Time & %
 - Re-equilibration Time & %

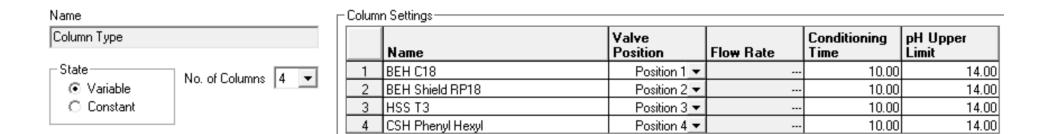
- Column Temperature
- Column Type
- Flow Rate
- Injection Volume
- pH
- Mobile Phase Blends
- Salt, Buffer, Additive Type & ΔC
- Wavelength


Method Parameter	Study Range
рН	2.70 - 4.90
Gradient Time (min)	10.0 – 25.0
Column Type	BEH C18
	BEH Shield RP18
	HSS T3
	CSH Phenyl-Hexyl

Prior knowledge (from original monograph) incorporated into Selected Column and Chemistry Study Factors and Range.

Experiment Setup – pH


Select One of the Built-in Buffer Systems or Enter Your Own


Experiment Setup – Gradient Time

	No.	Step Name	Time State	Time - Lower Bound	Time - Upper Bound	% Strong Solvent	C Slope	Update
V	1	Equilibration	Constant -	5.00		5.0	Gradient	Time(min) Slope(%/min
	2	Initial Hold	Constant -	2.00		5.0	No. of Levels	10.00 9.0
	3	Gradient	Variable	10.00	25.00		No. of Levels 5 💌	13.75 6.5
	4	Final Hold	Constant 💌	1.00		95.0		17.50 5.1
	5	Ramp Up to Wash	Constant	0.50				21.25 4.2
V	6	Column Wash	Constant 💌	4.00		99.0		25.00 3.6
	7	Ramp Down from Wash	Constant	0.50				
V	8	Re-equilibration	Constant 🔻	3.00		5.0		
			Program duration	:: Min = 26.00	minutes, Max	= 41.00 minutes		

Experiment Setup – Column Type

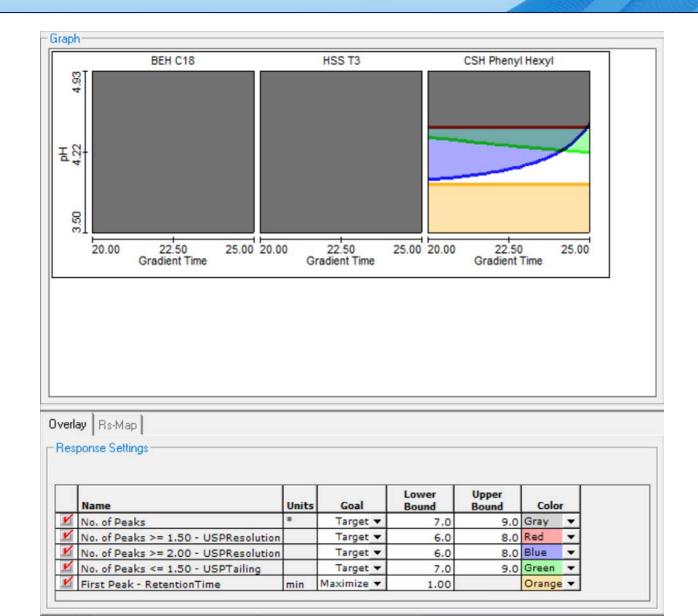
Chemistry Intelligence -

- Blocks design on Column Temp when it is a study factor
- Groups runs by MP Chemistry (e.g., pH, Strong Solvent)
- Incorporates column conditioning between MP Chemistry changes

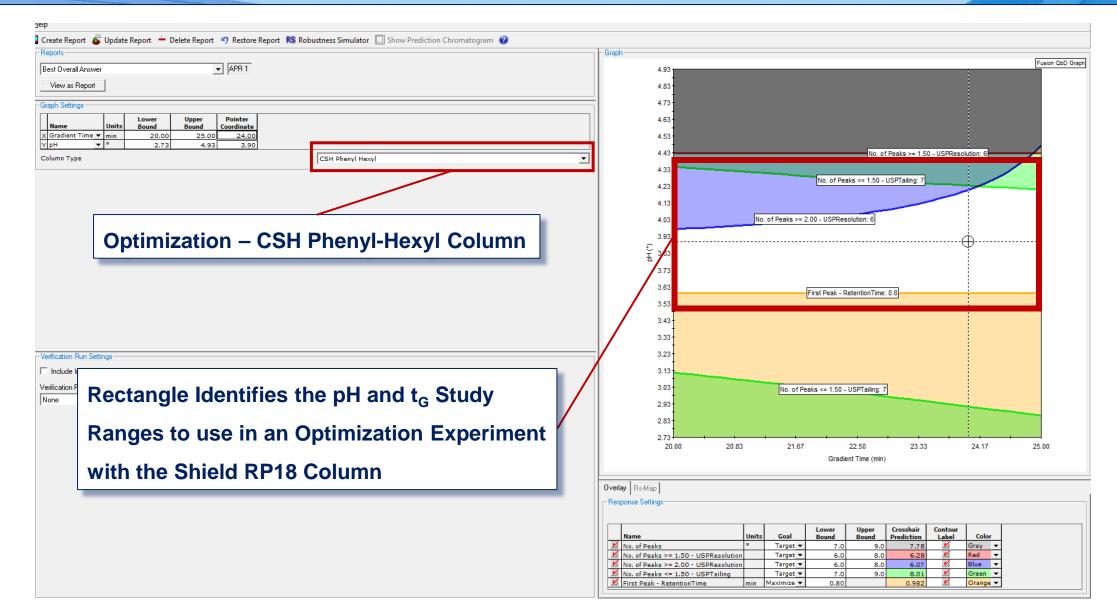
 Valve Intelligence –
 Automatically generates multiple sequences as needed when

 # of columns in exceeds # of available valve positions.

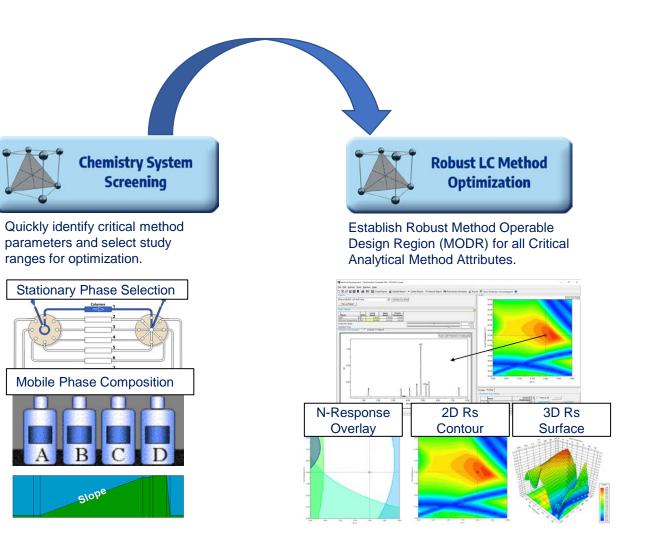
Screening Study – Trend Responses


Select Responses
PDA Ch1 225nm@4.8nm, Time offset by 0.020 mins.
Trend Responses
Add Delete Undo Changes Rest Trend Responses Support a Chromatographer's Screening Goals
Operator Value Response 1 No. of Peaks Automatically imported for each chromatogram:
2 №. of Peaks >= 1.50 USPResolution - 3 № No. of Peaks >= 2.00 USPResolution - How many peaks are visible?
4 Mo. of Peaks <=
6 Max Peak ■ 1 USPTailing ■ How many peaks have acceptable Tailing?
How well resolved is the API from pre- and/or post-eluting peaks?
(Any desired response)!
Select All Select None I = Incomplete D = Duplicate
Auto-imported Responses << Back

Screening Study – Simple Analysis


Modeling Trend Responses:

- Enables graphical visualization of factor effects and workable regions.
- Extends DoE Sampling to all possible combinations (APC) – e.g., DoE = 40 runs, APC = 200 runs.
- Avoids a risky "pick the winner strategy" based on a small sample size.



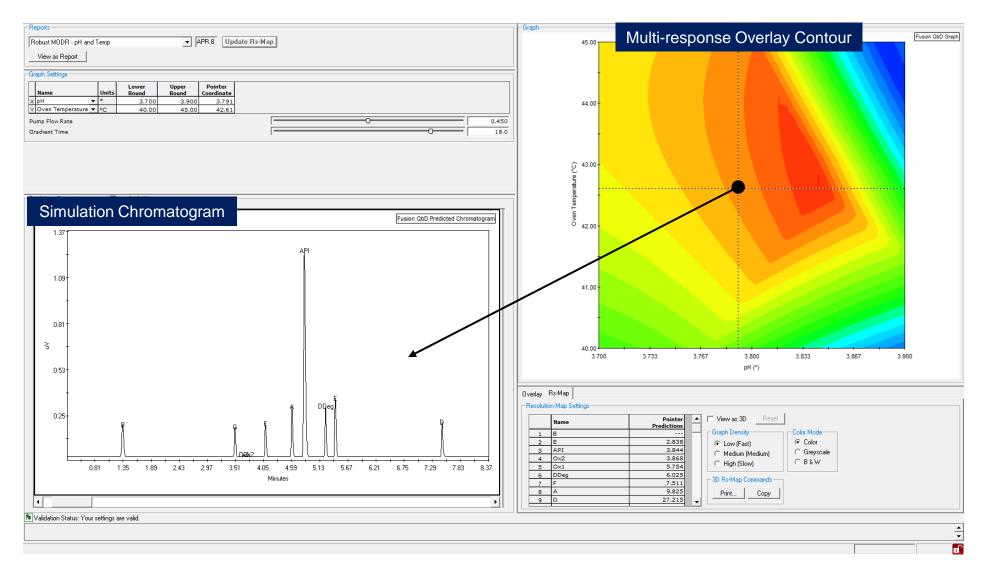
Screening Study – Simple Analysis

Screening \rightarrow Optimization

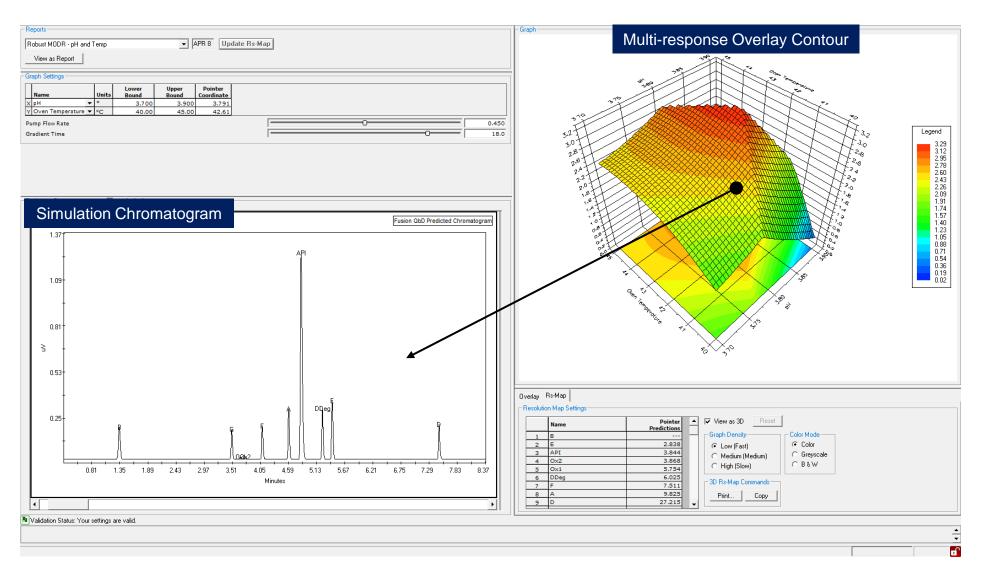
Full Experiment Automation with the CDS.

Full 21 CFR 11 Compliance with Bi-directional Audit Trail

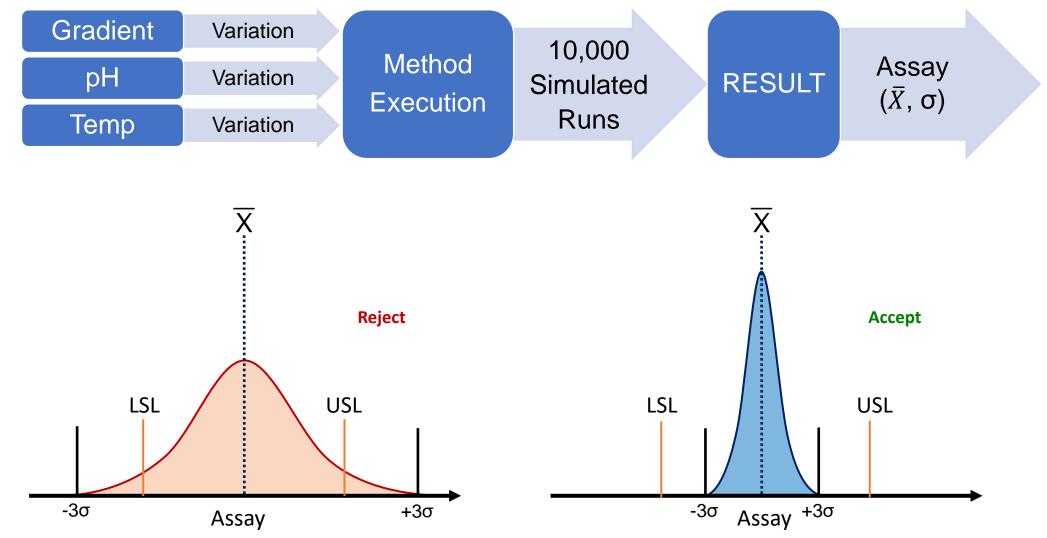
Method Parameter	Study Range			
Pump Flow Rate (mL/min)	0.30 - 0.50			
Column Oven Temperature (°C)	25.0 - 45.0			
Gradient Time (min)*	20.0 - 25.0			
рН	3.50 - 4.30			
Column Type	CSH Phenyl-Hexyl			


Light green background color indicates result obtained from screening study.

S-Matrix. PeakTracker[™] – UV & MS Data Based Tracking

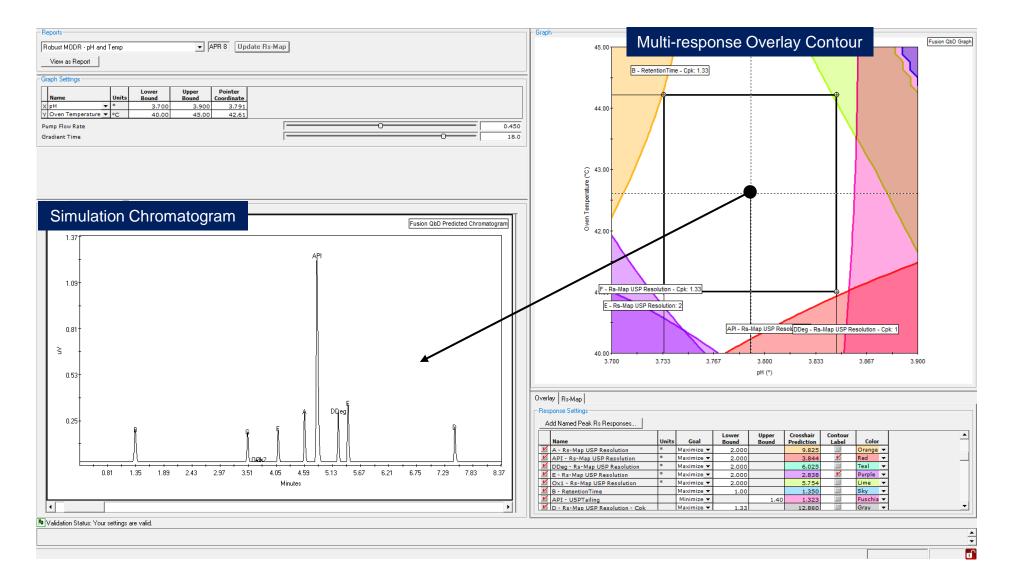


Traditional Resolution Map – 2D



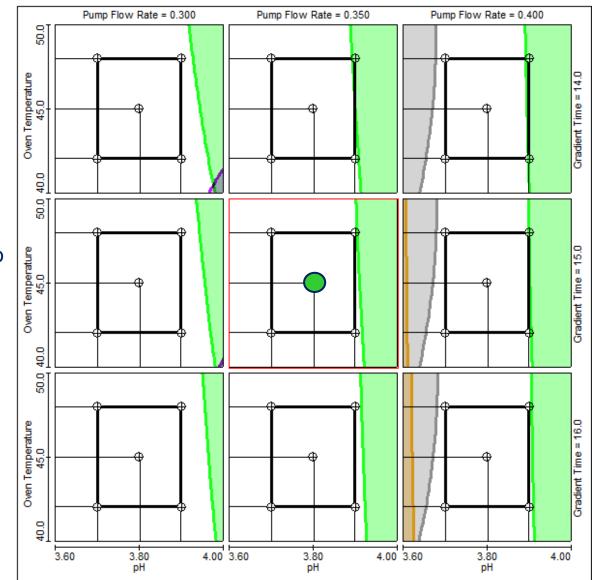
Resolution Map – 3D

Example Study Parameters – Expected Variation on Transfer



Robustness and MODR – Overlay

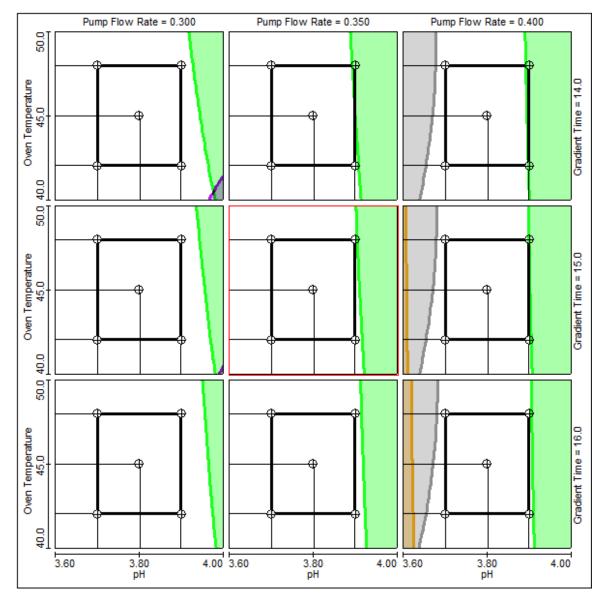
Mean Performance and Robustness:


- Resolution
- K-Prime
- Tailing
- Area %RSD
- Plates
- Run Time
- Etc.

ariable Settings			
nabled Experiment Variable	Units	Maximum Expected Variation (±3σ Value)	
Pump Flow Rate	mL/min	0.020	
Oven Temperature	°C	3.0	
рн	*	0.15	
Mobile Phase Composition (MPC)*	%	2.0	

- Robustness Wizard goes beyond development LC system to expected variation in QC lab during ongoing use.
- MODR and Independently Adjustable Ranges rectangle
 - MODR (unshaded region) methods are robust for all CQAs.
 - Rectangle & Trellis independently adjustable ranges within which permanent post-approval changes can be made while maintaining robust performance for all CQAs.

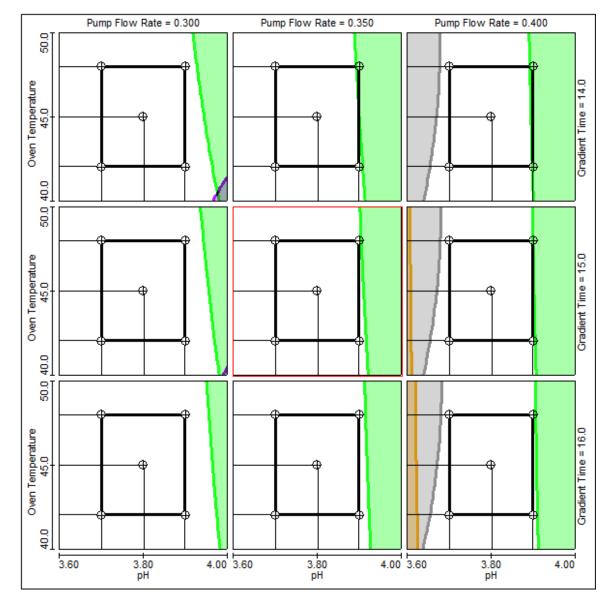
Analytical Control Strategy (ACS)


Variable Settings				
Enabled	Experiment Variable	Units	Maximum Expected Variation (±3σ Value)	1
	Pump Flow Rate	mL/min	0.020	1
	Oven Temperature	°C	3.0	1
	pH	*	0.15	1
\checkmark	Mobile Phase Composition (MPC)*	%	2.0	1

* - MPC variation is composition (blend) variation due to pump precision limits. A commonly used $\pm 3\sigma$ value = $\pm 2.0\%$.

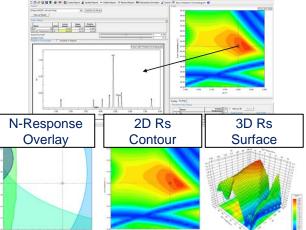
The value you enter will be applied to all Gradient Slope factors (e.g., Time, Slope, and Ramp Steps) in the experiment design.

LC System Control Specifications

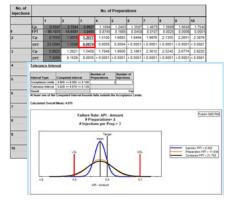


Analytical Control Strategy (ACS)

	Name	Units	Goal	Lower Bound	Upper Bound	Color
V	A - ResolutionW50	*	Maximize 💌	2.000		Red 🔻
V	API - ResolutionW50	*	Maximize 🔻	2.000		Blue 🔻
V	D-Deg - ResolutionW50	*	Maximize 🔻	2.000		Green 💌
V	E - ResolutionW50	*	Maximize 🔻	2.000		Orange 🔻
V	B - RetentionTime		Maximize 🔻	1.00		Gray 💌
V	API - USPTailing		Minimize 🔻		1.50	Purple 🔻
	B - RetentionTime - Cpk	*	Maximize 💌	1.330		Gray 💌
V	API - USPTailing - Cpk	*	Maximize 🔻	1.330		Purple 🔻
V	A - ResolutionW50 - Cpk	*	Maximize 🔻	1.330		Red 🔻
V	API - ResolutionW50 - Cpk	*	Maximize 🔻	1.330		Blue 🔻
V	D-Deg - ResolutionW50 - Cpk	*	Maximize 🔻	1.330		Green 💌
V	E - ResolutionW50 - Cpk	*	Maximize 🔻	1.330		Orange 🔻


Routine Monitoring – Control Charts

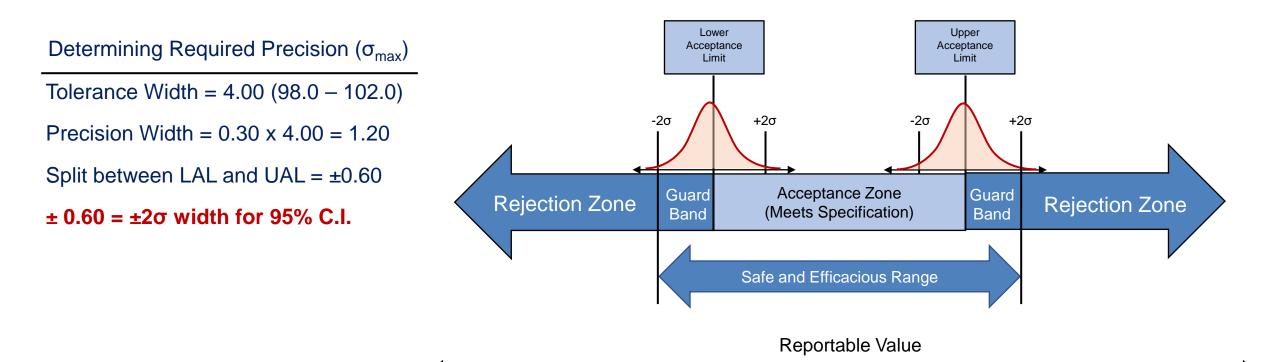
S-Matrix. Final LC Method -> Replication Strategy Optimization



Replication Strategy Optimization

Define % contributions of Preparation Error and Injection Error to Overall Method Precision (Total Analytical Error).

Select optimal Replication Strategy.


Full Experiment Automation with the CDS.

Full 21 CFR 11 Compliance with Bi-directional Audit Trail

Production: Amount of Precision-to-Tolerance (P/T) Ratio Available for the Analytical Method

- API method has a tolerance range of 4.0% (i.e., 98.0% to 102.0%)
- Analytical method allowance = 30% of the P/T ratio using a 95% confidence interval.

Replication Strategy for the Reportable Value

🕼 Method Development - Untitled1								
<u>File Edit Activity Tools Window H</u>	<u>H</u> elp							
🗅 🖻 😂 🖫 🎒 📕 🍎 🔳 🙎	🛿 Select Autosampler Tray 🧉 Update Setu	up Data 🏾 🗐 Generate Design 🔞						
Design of Experiments	Project Name Project 1	Experiment Name Experiment 1	Instrument Name Notes Fusion QbD H_Class	Experiment Phase Method Development	Experiment Type Replication Strategy	Separation Mode Reversed Phase (RPC)		
Data Entry / Analysis - • Data Entry • Data Analysis Reporting Toolkit • Fusion Reporter • Audit Log Reporter	Experiment Setup Global Sample Settings Image: Obtain all injection repeats from the same vial							
	Name Preparation replicates per sample	No. of Levels 5 Level Level Level Level Level	2 P. 3 P.	-2				
	Name Injections per preparation replicate	No. of Levels 5 Level Level Level Level Level Level Level	2	- <u>1</u> -2 -3 -4 -5				

S-Matrix.

Replication Strategy for the Reportable Value

ANONA

		Degrees of Freedom	Mean Square	F-ratio	P-value
Sample Preparation	4.05	4	1.01	56.9087	< 0.0001
Injection	0.36	20	0.02		
Overall	4.41	24			

Between Variables Components of Variation

Variable Name		Standard Deviation	Degrees of Freedom		(+/-) 95% Confidence Limits	Error Contribution (%)
Sample Preparation	0.20	0.45	4	2.7764	1.2	91.79
Injection	0.02	0.13	20	2.0860	0.2	8.21

Interval Test (USP < 1210 >)

Tolerance Interval

Interval Type	Computed Interval	Number of Preparations	Number of Injections per Preparation
Desired Probability %	90.00	2	2
Tolerance Alpha %	10.000		
Target	100.00		
Grand Mean	99.90		
Specification Limits	98.00 <= 100.00 <= 102.00		
Tolerance Interval	98.75 <= 99.90 <= 101.05		
Result	Pass		

Both computed Tolerance Interval bounds are within the defined limits.

<u>±2σ / ±T.I. Results</u>

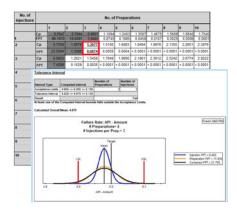
No. of preparation replicates per sample	2	2
No. of injections per preparation replicate	2	2

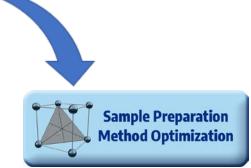
Statistic	Value
Variance	0.084
±2σ - Target	0.600
±2σ - Calculated	0.580
Standard Deviation	0.289
% RSD	0.29
% CV	0.29

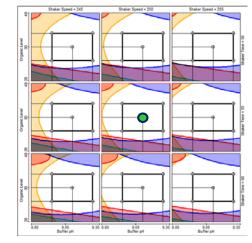
Process Capability - TOST

Cp Failure Rates Reference

Ср	No. of Failures per Thousand	Sigma			
0.33	322.174119	1			
0.67	44.431189	2			
1.00	2.699796	3			
1.33	0.066073	4			
1.67	0.000544	5			
2.00	0.000002	6			


No. of Injections	No. of Preparations										
-		1	2	3	4	5	6	7	8	9	1
4	±2σ	0.8384	0.5928	0.484	0.4192	0.3749	0.3423	0.3169	0.2964	0.2795	0.265
1	±T.I.	1.4067	0.8614	0.5885	0.556	0.4873	0.4386	0.4019	0.373	0.3495	0.329
2	±2σ	0.821	<u>0.5805</u>	0.474	0.4105	0.3672	0.3352	0.3103	0.2903	0.2737	0.259
2	±T.I.	1.1929	<u>0.5885</u>	0.579	0.5166	0.4569	0.4139	0.3811	0.355	0.3336	0.315
2	±2σ	0.8151	0.5764	0.4706	0.4076	0.3645	0.3328	0.3081	0.2882	0.2717	0.257
3	±T.I.	1.1167	0.579	0.5733	0.5033	0.4467	0.4056	0.3741	0.349	0.3283	0.310
4	±2σ	0.8121	0.5743	0.4689	0.4061	0.3632	0.3316	0.307	0.2871	0.2707	0.256
4	±T.I.	1.0773	0.5733	0.5695	0.4966	0.4416	0.4015	0.3706	0.3459	0.3256	0.308
5	±2σ	0.8104	0.573	0.4679	0.4052	0.3624	0.3308	0.3063	0.2865	0.2701	0.256
5	±T.I.	1.0532	0.5695	0.5667	0.4926	0.4385	0.399	0.3685	0.3441	0.324	0.307
6	±2σ	0.8092	0.5722	0.4672	0.4046	0.3619	0.3304	0.3058	0.2861	0.2697	0.25
0	±T.I.	1.0369	0.5667	0.5647	0.4899	0.4364	0.3973	0.3671	0.3429	0.323	0.306
7	±2σ	0.8084	0.5716	0.4667	0.4042	0.3615	0.33	0.3055	0.2858	0.2694	0.255
'	±T.I.	1.0253	0.5647	0.5631	0.488	0.435	0.3962	0.3662	0.3421	0.3222	0.305
8	±2σ	0.8077	0.5711	0.4663	0.4039	0.3612	0.3297	0.3053	0.2856	0.2692	0.255
0	±T.I.	1.0164	0.5631	0.5618	0.4866	0.4339	0.3953	0.3654	0.3414	0.3216	0.304
9	±2σ	0.8072	0.5708	0.466	0.4036	0.361	0.3295	0.3051	0.2854	0.2691	0.25
9	±T.I.	1.0095	0.5618	0.556	0.4854	0.433	0.3946	0.3648	0.3409	0.3212	0.304
10	±2σ	0.8068	0.5705	0.4658	0.4034	0.3608	0.3294	0.3049	0.2852	0.2689	0.25
10	±T.I.	1.004	0.5166	0.5166	0.4845	0.4323	0.394	0.3644	0.3405	0.3208	0.304


S-Matrix. Final LC Method -> Sample Prep Method Optimization

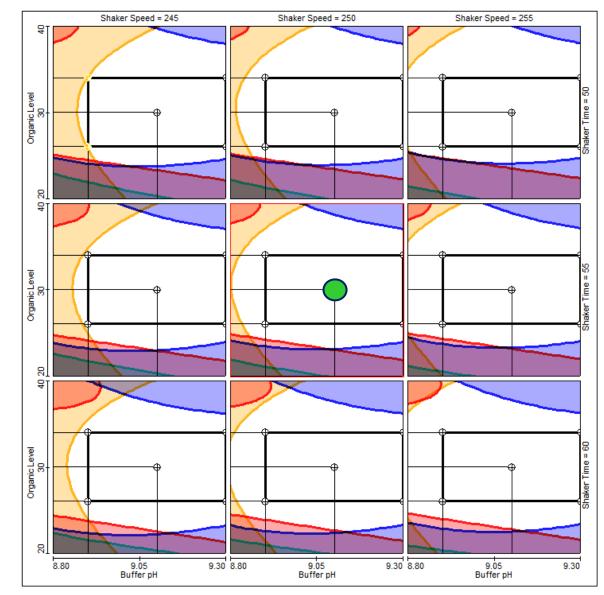

Define % contributions of Preparation Error and Injection Error to Overall Method Precision (Total Analytical Error).

Select optimal Replication Strategy.

Sample Preparation Optimization reduces the amount of the TAE contributed by the current Sample Preparation Method.

Full Experiment Automation with the CDS.

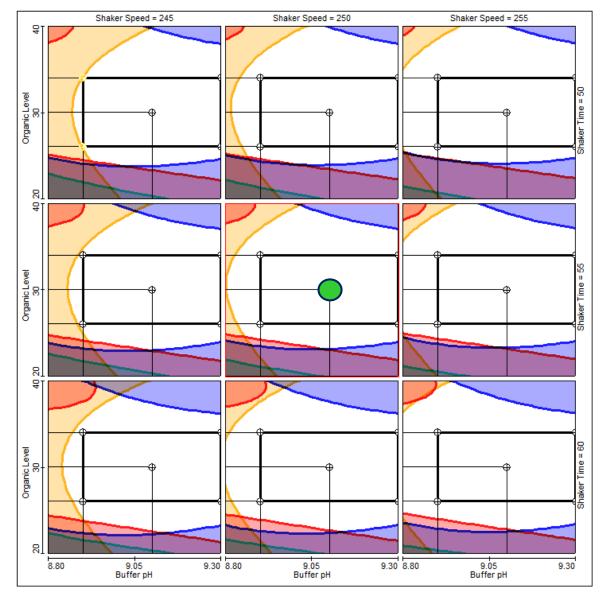
Full 21 CFR 11 Compliance with Bi-directional Audit Trail



Analytical Control Strategy (ACS)

Enabled	Experiment Variable	Units	Maximum Expected Variation (±3σ Value)
	Buffer pH	*	0.15
	Organic Level	%	2
	Sonication Time	min	0
	Shaker Speed	rpm	5
	Shaker Time	min	2

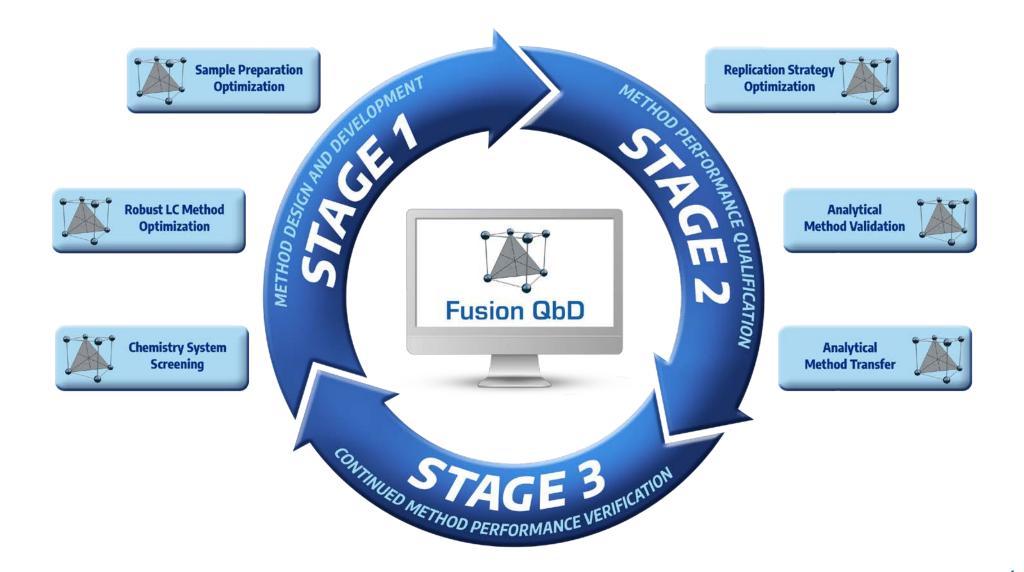
Prep Factor Operating/Control Specs



Analytical Control Strategy (ACS)

	Name	Unite	Goal	Lower Bound	Upper Round	Color
V	API 1 - %L.C(1_1)	*	Target 💌	96.50	98.50	Blue 🔷 🔻
N	API 2 - %L.C(1_2)	*	Target 🔻	97.50	99.50	Red 🛛 🔻
	API 1 - %L.C(1_1) - Cpm		Maximize 💌	1.33		Orange 🔻
	API 2 - %L.C(1_2) - Cpm		Maximize 💌	1.33		Teal 📃 🔻

Routine Monitoring – Control Charts


The Business Case

Why am I doing this?

Development of a fit-for purpose robust method makes good business sense for three important reasons.

- 1. Minimizes the possibility that the method will fail on validation and/or transfer.
- 2. Minimizes or eliminates out-of-specification results, and therefore OOS investigations.
- 3. Most importantly, it provides accurate, precise, unbiased results which support both good business decisions and successful regulatory review.

43