Fusion Analytical Method Validation

The Only Software That Has It All!

- 100% aligned with FDA/ICH Quality by Design (QbD) guidances!
- Can be used for LC and Non-LC methods (e.g. GC, CE, Q-NMR)!
- Automates LC method validation experiments on multiple instruments and CDS systems!
- Regulatory accepted validation for both Small & Large Molecules!
- Statistically rigorous and defensible robustness testing!
- Handles multiple compounds creates complete reports for each!
- Shortens your LC method validation time by as much as 75%!

Automated Experimentation for LC Method Validation

The objective of Method Validation is to provide documented evidence and a high degree of assurance that an analytical method employed for a specific test is suitable for its intended use. Method Validation is a regulatory requirement as much as a scientific necessity.

Key Benefits

- > Full Automation for LC Method Validation multiple LCs and CDS systems
- Aligned with FDA and ICH guidances
- 21 CFR 11 compliance support toolset Including E-records and E-signatures, full audit logging Workflow management system with E-review and E-approve loops
- Easy setup of experiments Create standardized workflow templates Facilitate rigorous practice and defensibility
- Simple documentation review and reporting Easy to defend and communicate Reports meet all FDA and ICH guidelines

Method Validation Experiment Suite

- Analytical Capability and System Suitability
- Specificity
- Filter Validation
- Sample Solution Stability (stability for a given time period under prescribed conditions)
- Accuracy
- Linearity and Range
- Repeatability (intra-assay precision)
- Accuracy/Linearity and Range/Repeatability Combined Design
- [ICH-Q2(R1) Accuracy, Linearity, and Repeatability can be done together as a single combined experiment]
- LOQ, LOD
- Intermediate Precision and Reproducibility (USP Ruggedness)
- Robustness done the right way!

Non-LC Method Validation Experiments

Used successfully for Non-LC methods such as GC, CE, Q-NMR, as well as hyphenated methods (e.g. LC-MS). Accepted in customer regulatory submittals.

Automated LC Method Validation – Five Step Workflow

Experiment Setup

Global Compound Settings

Assay Type

Compound Name

API

Sampling Plan

No. of Compounds 3

No. of Levels per Compound 5

Potency

Units

mg

Level Settings

80

90

100

110

120

Level 1

Level 2

Level 3

Level 4

Level 5

.00 .00

- 1. You complete a simple experiment setup template.
- 2. Fusion QbD creates the Validation Experimental Design and exports it to the CDS.
- 3. The CDS runs the validation experiment sequence.
- 4. Fusion QbD imports and analyzes the results.
- 5. Fusion QbD automatically creates final reports and graphs.

Example Workflow – Combined Accuracy / Linearity / Repeatability

Step 1 – You Complete the Simple Template

Fusion LC Method Validation Software (FMV) has simple experiment setup templates for each type of validation experiment. The simple Linearity and Range template is shown below with user definable settings:

User-definable Settings – Basic Setup

- No. of Compounds
- No. of Levels per Compound
- 100% Standard Level
- Compound Name, Units, and Levels

User-definable Settings – Standards Setup

FMV has a flexible Standards Setup wizard which enables you to select your desired standards strategy for results quantitation within the CDS:

- Bracketing Overlap
- Bracketing Non-overlap
- Grand Average
- Calibration and Check Standards
- Multi-level Bracketing Overlap

ultileve	ng - NonOve verage el Bracketing if Repeat Inje	Star - Ove	rfap s per Level 1	•	Standards Scheme No. of Standards per Group 1 • Hinjections Between Groups 3 •
Experi	iment Design				
	Run No.	API	Impurity A	Impurity B	
1	CAL-L1.1		***		-
2	CAL -121		140		
3	CHK - 1.8		100	100	
	1.a	80	80	80	
5	1.6	80	80	80	
	1.c	80	80	80	
	CHK - 1.b		100	100	
	2.a	90	90	90	-
9	2.0	90	90	90	
	2.0 CHK+1.c	90	90	90	
."	CHK-1C	1100	1100	1100	,
		_			
			ettings are valid.		

Step 2 – Fusion QbD Creates the Validation Experimental Design and Exports it to the CDS

FMV automatically constructs the validation experiment designs within the CDS as ready-to-run sequences/sample with the proper Vial No. and Injection Type designations for Samples, Standards, and Blanks.

ompany oject: F	Project 1	ix Corporatio	
Experim Experime	nt Desig		
Run No.	API (mg)	Impurity A	Impurity B (%)
CAL-L1.1			1.41
CAL - L2 1		-	
CHK-1A	100	100	100
1.8	80	80	80
1.b	80	80	80
1.c	80	80	60
CRK-1.b	100	100	100
2.a	90	90	90
2.6	90	.90	90
2.c	90	90	90
CHK - 1.c	100	100	100
3.a	100	100	100
3.b	100	100	100
3.c	100	100	100
CHK-14	100	100	

E.	and the second			a faul	1.1.1.1								
6		12	5 32	3/5	自己局								
Aç	ply Table Pi	elecer	ices	Sample Set 1	fethod		•						
8	Plate/Well	Hi- Vol (uL)	# of injs	Label	SampleName	Function	Γ	Method Set / Report Method	Run Time (Minutes)	Data Start (Minutes)	Next Inj. Delay (Minutes)	Column Position	0
1				-	-	Condition Column	Exan	ple Sample Set 001_097	8.80	0.00	0.00	Position 1	
2				1		Condition Column	Exam	ple Sample Set 001_098	8.80	0.00	0.00	Position 2	т
3					_	Condition Column	Exam	ple Sample Set 001_099	8.80	0.00	0.00	Poston 3	1
4						Condition Column	Exam	ple Sample Set 001_100	8.80	0.00	0.00	Position 4	10
5						Condition Column	Exam	ple Sample Set 001_101	0.10	0.00	0.00	Postion 1	-
8						Equilibrate	Exam	ple Sample Set 001_101	10.00	0.00	0.00	No Change	-
7	1.A.1	1.0	1	Unk-000-000	Blank - 1	Inject Samples	Exam	ple Sample Set 001_101	11.00	0.00	1.50	Sec. 23.	11
8	41243	1			Section .	Condition Column	Exam	pie Sample Set 001_102	0.10	0.00	0.00	Position 2	
9						Equilorate	Exam	ple Sample Set 001_102	3.00	0.00	0:00	No Change	
10	1.A.1	1.0	1	UHK-000-000	Blank-2	Inject Samples	Exam	ple Sample Set 001_102	11.80	0.00	1.50	Sec. and Sec.	1
11	1000	1	141	1	1	Condition Column	Exam	ple Sample Set 001_103	0.12	0.00	0.00	Position 3	٦
12				1		Equilibrate	Exam	ple Sample Set 001_103	3.00	0.00	0.00	No Change	т
13	LA.L	1.0	1	Unix-000-000	Blank - 3	inject Samples	Exam	ple Sample Set 001_103	11.80	0.00	1.50		1
14						Condition Column	Exam	ple Sample Set 001_104	0.10	0.00	0.00	Postion 4	
15				-		Equilibrate	Exam	ple Sample Set 001_104	3.00	0.00	0.00	No Change	
16	1:A,1	1.0	1	Unik-000-000	Blank - 4	Inject Samples	Dian	ple Sample Set 001_104	11.00	0.00	1.50		1
17						Condition Column	Exam	ple Sample Set 001_001	0.10	0.00	0.00	Postion 1	
18						Equilorate	Exam	ple Sample Set 001_001	3.00	0.00	0.00	No Change	1
19	1.A,Z	1.0	1	Unk-001-001	1	inject Samples	Exam	ple Sample Set 001_001	11.50	0.00	1.50		1
29					-	Condition Column	Exam	ple Sample Set 001_002	0.13	0.00	0.00	No Charige	
21						Equilibrate	Exam	ple Sample Set 001_002	3.00	0.00	0.00	No Change	1
22	1:A.2	1.6	1	UHR-001-002	2	Inject Samples	Exam	ple Sample Set 001_002	5.80	0.00	1.50		1
23						Condition Column	Exam	ple Sample Set 001_003	0.10	0.00	0.00	Postion 2	
24		-		1	-	Souther also	Evan	nie Earnie Sel 001.003	3.05	8.00	6.00	No Channe	

Step 3 – CDS runs the Validation Experiment

FMV sequences run automatically on the CDS. **FMV** even enables you to include a Shutdown method as the last method run so that you can execute **FMV** sequences overnight while you sleep!

Step 4 – Fusion QbD Imports and Analyzes the Chromatogram Results

FMV automatically imports the required peak result data from the CDS, and re-maps the results to the design for automated analysis, graphing, and reporting. This is a key feature ensuring quality, as manual transcription is a common source of

error and risk.

	nse Name		iponse Units			
Amou	nt	Ing				
	Run	API 1 Target	API 1 Actual	API 2 Target	API 2 Actual	
1	1.a	1.000	1.003	0.2500		-
2	1.5	1,000	1.01	0.2500		
3	1.c	1.000	1.012	0.2500		
-4	2.a	2.000	1.995	0.3500		
5	2.5	2,000	1.99	0.3500		
6	2.c	2.000	2.004	0.3500		
7	3.a	4.000	3.998	0.3600		
8	3.b	4.000	4.002	0.3600	-	
9	3.c	4.000	3.997	0.3600		
		5,000	5.005	0.4000		
	4b	5.000	4.992	0.4000		
	4.c	5.000	5.009	0.4000		
	5.a	6.000	6.004	0.4500	-	
	5.b	6.000	6.003	0.4500		
15	5.c	6.000	5.997	0.4500		
•	1					
-	-					

				v.	
 Import C 	Chromatogram Trace Da	la			
end Respo				Named Compounds in CDS	
Add	Delete	Undo Ci	nanges Restore De		
ADD	Delete	Undo Li	hanges Hestore De		
	Operator	Value	Response	A A B C D E C D C D C C C C C C C C C C C C C	
1 🗐	No. of Peaks		-		
2 🗐	No. of Peaks >=	1.50 U	SPResolution	F	
3 =	No. of Peaks >=	2.00 U	SPResolution		
4 =	No. of Peaks <=	1.20 U	SPResolution SPResolution SPResolution SPResolution SPResolution		
5 🗐	Max Peak	10	SPResolution	Response Data	
5 =	-		-	Available Included	
				2ndDerivativeApex	
				25igma 35igma	
				4Sigma >>	
				AboveldentificationThreshold	
•				AboveQualificationThreshold <	
Select All	Select None		I = Incon D = Dup	Asym Asym AsymAt10	

Flexible Data Analysis Setup Wizard

- Associate different responses with different analyses – e.g.
 - Associate Amount results data with analysis of Accuracy
 - Associate Area results data with analysis of Linearity
- Include LOD and LOQ and select Calculation Method(s)
- Set Global and Level-specific Acceptance Criteria
- Including Level-specific Spec Limits for Raw Data

ielect Response for A Peak Area	Landon to								
	Analysis								
	~								
Amount									
Peak Area									
API									
Perform Data	Analysis								
Intercent % Bia	s Calculation Options			LOO /	(100				
1 - Charles and the set					late LOD	0	alculate LOO		
Uata Based	O Model Based							en stren	
Compound Base	100m/s			Mr.	Ise Residual Standard Dev	iation b	Use Residu	ual Standard Dev	iation
Compound base									
		1 00000 00000			ise Intercent Standard De	viation [Use Interc	ent Standard De	viatio
Linearity (R	egression r >=) 0.9998	7.63 7.63			lse Intercept Standard De	viation [Use Interd	ept Standard De	viatio
1.22	egression r >=) 0.9998	, test test			lise Intercept Standard De	viation [Use Interd	ept Standard De	viatio
		128 128 128 128			ise Intercept Standard De	viation [Use Interc	ept Standard De	viato
Intercept	egression r >=) 0.9998	, test test			ise Intercept Standard De	viation [Use Interc	ept Standard De	viatio
[Intercept	egression r >=) 0.9998 % Blas] <= 2.00	, test test			Jse Intercept Standard De	viation [Use Interc	ept Standard De	viatio
Intercept	egression r >=) 0.9998 % Blas] <= 2.00	, test test			ise Intercept Standard De	viation [Use Interc	ept Standard De	viatio
[Intercept	egression r >=) 0.9998 % Blas] <= 2.00	, test test	Source Data		lse Intercept Standard De	viation [Use Interc	ept Standard De	viatio
Level Based Crit	egression r >=) 0.9998 % Bias] <= 2.00 eria ults	, test test	Source Data		lse Intercept Standard De	viation [_] Use Interc	ept Standard De	viato
Level Based Crit	egression r >=) 0.9998 % Bias] <= 2.00 er/a ults esponse Factor	58 58	-Source Data-		lse Intercept Standard De	viation [_ Use Interc	ept Standard De	wiato
Level Based Crit	egression r >=) 0.9998 % Blas <= 2.00 eria ults esponse Factor 28 238		Source Data					ept Standard De	viato
Intercept Intercept Level Based Ont Computed Res Include Ru	egression r >=) [0.9998 % Bitac] <= [2.00 eria ults esponse Factor [26] [26] [Linearity	Response Factor	Source Data	Individual Resul	8	Individual R	Results	ept Standard De	viato
Level Based Crit	egression r >=) [0.9998 % Bites] <= [2.00 eria ults esponse Factor [26] [26] [Lineerity	Response Factor % Bias <=		Individual Resul	8	Individual R	Results	179899	
Level Based Crit	egression r >=) 0.9998 % Blas <= 2.00 eria ults esponse Factor 58 286 Uncentry % Blas of Residuals <=	Response Factor % Bas <=	Level	Individual Resul	ts it	Individual R	Results		6
Untercept Untercept	agression r >=>) 0.5998 % Basi <= 2.00 er/a d/ts sponse Factor % Bas of Residuals <= % 5.00	Telepone Factor % Bias <=	Level	Individual Resul	ts it 1627663	Individual R	Results	179899	6 6 5

Step 5 – Fusion QbD Automatically Creates Final Reports and Graphs

ICH Q2(R1). LINEARITY

... If there is a linear relationship, test results should be evaluated by appropriate statistical methods, for example, by calculation of a regression line by the method of least squares...

The correlation coefficient, y-intercept, slope of the regression line, and residual sum of squares should be submitted. A plot of the data should be included...:

- Correlation Coefficient
- Y Intercept
- Slope of the Regression Line

- Residual Sum of Squares
- Linear Regression Plot
- Residuals Data Table and Plot

wie is mulit zers no z i us no try inter z seg Jinearity and Range Report: APIPeak-Area (area counts)	2 (appen) 3 (400) 24 (1 taber) President (1 taber) President (1 taber) Versident (1 taber) Versident (1 taber)
ate Specification Limit Table	Clearendant To
Tanger (der: All Proditions Post from Post from	General Validation Acceptance Otheria Table
APT Frankform Frankform Prankform and an approximation special Second Control Prankform A top C221255 Sull Sec Long press Frank	Regressed Tableto, Name Statistic Value (Cristian Value (Cristian Value)
b 1.000 1.002270 1.012300 1290,000 Paul	7 1.000 2.000 Fees Internet's Star Tais Sand 4.07 2.56 Fees
a 1000 1.734.974 1.017.903 1.798.000 Pass a 2.000 2.404.997 3.546.903 3.102.004 Pass	
8 2000 3.396.000 3.510.000 3.510.000 Pere c 2000 3.496.270 3.540.000 3.50.200 Auto	Regression ANOVA Statistics Table
a 4.00 6.01-300 6.707.002 6.305.000 Fam	Nonconstructures in Summer Statement Constructive Const
L 200 L	Non-sealer \$15,880,101,947,508,881 0;105,667,508,895,905,647,508,955,222,394,9564 (2012)
a 8-000 8.112 800 8.00 300 8.00 300 9au B 5-000 8.754 805 8.00 800 700 Pan	Una di al al al al al al al al
e 5.000 8.1452.407 8.000 MG 2.1102.000 Pase	Repression Coefficients Table
a 600 91,292,201 91,94,301 91,306,445 Page b 6,000 91,295,505 91,94,501 91,306,447 Page	Redition Confluent Confluent Lower WA Supports
4 6.000 19.205.000 16.104.202 10.203.400 Feex	Vessali Name Vanne Standartford (Visione Public) Catholica Catholi
Insurty-and Range Data-Table	AN 17/0.0014 Section 41.007 0 0001 1707.25300 1702.402.40
Tangat Actual APT. APT Annual Problems	Notwork Variable Model: Hwa www.cooprt5an ar-rt3nt30536x a/rt
aufen mei enertende	Range radie-wheetaar
b 1000 LD 1.042.2%	Residuals Summary Table
a 1000 1.000 1.000 1.000 0.0000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0	
6 3000 100 100 100 00 4 3000 3002 320,70	Annual Disclotted APPT ADV Annual Disclotted Village
a 4000 3.990 8.874.900	Department (New Yorkson Barradian) (Stream of the Stream o
a 4000 4 8.000 400 4 4000 2 80 4.000 800	1.01 1.72/1994.00-00.0294.00 .02.00 .000 .000
a 5.000 5.000 E.S.12.000 B 5.000 5.000 E.S.12.000	8.012 1201400 13 10340 16 0.00 6.00 Para 1000 3.01100210 3.01100 0.012 8.00 Para
4 1000 5400 E1X240	100 14024010 14410 410 400 Rose 2001 2004004-02742 400 100 Per
a 8.000 6.004 98,278,720 a 8.000 8.007 10.250,720	3.000 C347302.00 21395.00 0.00 8.00 Pane
C 8.000 5.961 NL20L000	4 8.08.05.25 (0.08.20) 8.05 (0.20) 8.05 (0.00) 3.067 (0.06.05) (0.200.02) 8.20 (0.00) 9.000
	5 (10) 45 (40) (0) 42 (00 (1)) -4 (0) 8 (1) Page 4 (10) 4 (40) (0) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1
	5.004 8.507.006.70 10.000.20 0.10 8.00 Pane
	0.014 H.286.81195 -0.568.00 -0.15 -5.00 Park 4.000 H.20196 Hall M.20191 -0.16 -0.16 - 8.00 - Park
	4 602 01 276 260 00 11 11 20 20 0 0 - 0 000 Pare
1-013	2-013

FMV also enables you to include images of representative chromatograms into your final reports.

ICH Q2(R1):

For chromatographic procedures, representative chromatograms should be used to demonstrate specificity, and individual components should be appropriately labeled...

Robustness Validation – DONE RIGHT!

Experiment Setup – LC Robustness Example

You select the parameters to include in the FMV robustness experiment. FMV will automatically generate the robustness design, re-construct it in the CDS as ready-to-run methods and sequence, import the chromatogram results directly from the CDS, re-map them to the robustness study, and instantly analyze, graph, and report the results.

Method Type Gradient		
Available Variables	Included Variables	Activate Online Preparation
Gradient Curve Gradient Slope Sample Concentration Additive Concentration Additive Type Column Type	Pump Flow Rate Injection Volume Owne Wavelength	C Buffer Concentration C Additive Concentration C D

Gradient Methods

- Normal Phase
- Ion Exchange
- Size Exclusion

FMD provides visual displays to simplify setup for complex settings such as required pump program conditions and key settings for each included column such as pH upper limit and conditioning time.

The FMV Difference Lowers your Field Failure Risk

FMV robustness experiments let you use valid experiment ranges for accurate, defensible estimates of parameter effects.

This avoids the risks associated with setting ranges equal to the expected variation ranges of your instrument parameters.

E	xperiment Variable Maximum Expected Variation Maximum Expected Variation: The 33 sigma value defines the "total" variation in the p (experiment variable) around its defined setpoint that is occur on transfer and normal use due to statistically rank	to Parameter (230 Value)	
	Experiment Variable	Units	Maximum Expected Variation (±3 Sigma Value)
	Pump Flow Rate	mL/min	0.1
	Final % Strong Solvent	%	2
	Oven Temperature	°C	2
	•	<	< Back Next>> Finish Cancel @

FMV robustness analysis wizard lets you set:

- expected parameter variation ranges
- acceptable performance limits for each • key response

The wizard then accurately determines and reports the method's true robustness.

Maximum A The Maximu differences (response) b	ettings for Robustness llowable Difference from Mear: um Allowable Difference limit values define from the mean for a given critical quality at beyond which the response value is unacc	tribute eptable. For	Televises With Data for a Over Ortical Duality Attribute Televises With Data State S
evaluated, I	e to be considered robust in terms of the p the variation in the response measurement must be encompassed by the Maximum Alli mit values.	s obtained in	Gind durity Antone
Enabled	Response	Maximum Al	Ilowable Difference from Mean (± Value)
2	API - USPResolution	0.5	
Ľ	API - Peak Retention Time	0.1	
•			• •
Select ¿	<u>All</u> Select <u>N</u> one		
		Kack	k Next>> Finish Cancel 🥝

Robustness Validation - Statistical Significance Testing - Model Coefficients

Robustness Report: API - Area (*)

Coded Variable Name Key

Coded Variable Name	Actual Variable Name
A	Initial % Organic
В	Oven Temperature
с	pН

Variable Effects Table - Statistical Significance

Model Term	Robustness Testing Range (Coded)	Coefficient Value	Predicted Effect	Effect Standard Error	Effect t statistic	Pass/Fail
C	0.4000	161,391.4753	64,556.59	13,911.0838	4.6407	Fai
В	0.8000	74,520.8782	59,616.70	13,794.1618	4.3219	Fai
A	0.8000	-47,297.1750	-37,837.74	14,136.9455	-2.6765	Fai
(A) ²	0.1600	-124,093.0600	-19,854.89	14,136.9455	-1.4045	Pass
(B) ²	0.1600	64,847.5165	10,375.60	13,794.1618	0.7522	Pass
B*C	0.1600	50,247.7248	8,039.64	13,714.4961	0.5862	Pass
A*B	0.3200	-9,783.1120	-3,130.60	13,874.0259	-0.2256	Pass
A*C	0.1600	-13,383.4646	-2,141.35	14,022.6463	-0.1527	Pass
(C) ²	0.0400	32,821.4015	1,312.86	13,911.0838	0.0944	Pass

Maximum Allowable Value: |Predicted Tolerance Limit t statistic| < 2.2622 for each variable studied

Robustness Validation - Practical Significance Testing - Effects Magnitude

Automated LC Method Validation – Proven ROI

International Pharma Co. Benchmarking Project

Realized Time Savings = 85%.

Using historical records* and adjusting for project complexity

Minimum Expected Time Savings = 60%.

Copyright (©) 2018 S-Matrix Corporation, All Rights Reserved.

S-Matrix Software Products and Support

S-Matrix Corporation develops advanced Design of Experiment based-software that automates R&D experimental work according to Quality-by-Design principles and methodologies. S-Matrix's Fusion QbD platform automates and redefines experimentation in Analytical R&D, Chemical and Process R&D, Formulation, and Product R&D.

Fusion QbD Software System Product Suite

Fusion LC Method Development

Fully automated QbD experimenting on your LC system, integrated DOE, automated robustness simulation & chromatography data modeling. Chemistry screening without the need for peak tracking.

Fusion Analytical Method Validation

Meet regulatory guidelines with a best-practices approach toward LC method validation with comprehensive reporting. Also supports formal validation of Non-LC methods (e.g. GC, CE, Q-NMR).

Fusion Inhaler Testing

Create sampling plans, export and import data from your CDS via validated data exchange, calculate particle size distribution results, and generate reports according to USP 601, Ph.Eur. 2.9.18, and ISO 27427.

Fusion Product Development

The perfect QbD software for formulation & product development – automated experimental design selection, sophisticated analysis tools, including automated modeling and simulation, comprehensive reporting, with a full 21 CFR 11 compliance toolset.

Sales and Support

Sales: Tel: 800-336-8428 (Outside the USA: 707-441-0406). Email: <u>Sales@smatrix.com</u> Customer Support: Tel: 707-441-0407. Fax: 707-441-0410. Email: <u>Support@smatrix.com</u>

On-site and Web Training

S-Matrix offers on-site training programs for installed systems. Training includes experiment strategies, experimental design (DOE), data analysis, graphical visualization and ranking of effects, numerical and graphical optimization, and QbD Reporting.

S-Matrix also offers interactive web training which covers software features and operation, along with general principles of DOE and QbD. Web training programs can be tailored to suit your individual focus and information requirements.

To arrange an on-site or web-based training program, call 707-441-0406.

All trademarks are the property of their respective owners

S-Matrix Corporation 1594 Myrtle Avenue Eureka, CA 95501 USA <u>www.smatrix.com</u>