Fusion Analytical Method Validation

The Only Software That Has It All!

- 100% aligned with FDA/ICH Quality by Design (QbD) guidances!
- Can be used for LC and Non-LC methods (e.g. GC, CE, Q-NMR)!
- Automates LC method validation experiments on multiple instruments and CDS systems!
- Regulatory accepted validation for both Small & Large Molecules!
- Statistically rigorous and defensible robustness testing!
- Handles multiple compounds creates complete reports for each!
- Shortens your LC method validation time by as much as 75%!

Automated Experimentation for LC Method Validation

The objective of Method Validation is to provide documented evidence and a high degree of assurance that an analytical method employed for a specific test is suitable for its intended use. Method Validation is a regulatory requirement as much as a scientific necessity.

Key Benefits

- > Full Automation for LC Method Validation multiple LCs and CDS systems
- Phased Method Validation Early Phase – performance characterization supports development Final Phase – Aligned with FDA and ICH guidances
- 21 CFR 11 compliance support toolset Including E-records and E-signatures, full audit logging Workflow management system with E-review and E-approve loops
- Easy setup of experiments Create standardized workflow templates Facilitate rigorous practice and defensibility
- Simple documentation review and reporting Easy to defend and communicate Reports meet all FDA and ICH guidelines

Early Phase Method Validation (Performance Characterization)

Analytical Capability and System Suitability Specificity Filter Validation Accuracy Linearity and Range LOQ, LOD Repeatability* (intra-assay precision) Sample Solution Stability (stability for a given time period under prescribed conditions)

Final Phase Method Validation (FDA and ICH Submittal Quality)

Analytical Capability and System Suitability Specificity Accuracy/Linearity and Range/Repeatability – Combined Design [ICH-Q2(R1) – Accuracy, Linearity, and Repeatability can be done together as a single combined experiment] LOQ, LOD Intermediate Precision and Reproducibility (USP Ruggedness) Robustness – done the right way!

Non-LC Method Validation Experiments

Used successfully for Non-LC methods such as GC, CE, Q-NMR, as well as hyphenated methods (e.g. LC-MS). Accepted in customer regulatory submittals.

Automated LC Method Validation – Five Step Workflow

- 1. You complete a simple experiment setup template.
- 2. Fusion QbD creates the Validation Experimental Design and exports it to the CDS.
- 3. The CDS runs the validation experiment sequence.
- 4. Fusion QbD imports and analyzes the results.
- 5. Fusion QbD automatically creates final reports and graphs.

Example Workflow – Combined Accuracy / Linearity / Repeatability

Step 1 – You Complete the Template

Fusion LC Method Validation Software (FMV) has simple experiment setup templates for each type of validation experiment. The simple Linearity and Range template is shown below with user definable settings:

User-definable Settings – Basic Setup

- Include Limit of Quantitation
- Include Limit of Detection
- No. of Compounds
- No. of Levels per Compound
- 100% Standard Level
- No. of Injections of 100% Level

User-definable Settings – Method Performance Acceptance Criteria

• Linearity (% Bias <)

- Accuracy (% Bias <)
- Linearity (Regression r >=)
- Repeatability (% RSD <=)

User-definable Settings – Standards Setup

FMV has a flexible Standards Setup wizard which enables you to select your desired standards strategy for results quantitation within the CDS:

- Bracketing Overlap
- Bracketing Non-overlap
- Grand Average
- Calibration and Check Standards

ione S acketa and A	in and Check elected: ig - NonOvell rerage resolutions f Repeat Injec	op Standards	rel 1 _	Check Standards Scheme No. of Standards per Group 2 No. of Intections Between Groups 3
Exper	ment Design Run No.	API 1	API 2	-
1	CAL-L11		-	-
2	CAL-L21	las	444.75]
3	CAL-L31	114		
4	CAL L4.1	111	000	Flexible setup of the
5	CAL L5.1	-		
6	Chk 1.a	5.000	0.4000	required Standards
7	Chk - 1.b	5.000	0.4000	•
8	1.a	1.000	0.2500	Strategy.
9	1.6	1.000	0.2500	on anogy.
10	1.c	1.000	0.2500	
	Chk 1.d	5.000	0.4000	· ·
4				•
11 12 4	1.c Chik + 1.c Chik + 1.d	5.000	0.4000	,

Copyright (©) 2015 S-Matrix Corporation, All Rights Reserved.

Step 2 – Fusion QbD Creates the Validation Experimental Design and Exports it to the CDS

FMV automatically constructs the validation experiment designs within the CDS as ready-to-run sequences/sample with the proper Vial No. and Injection Type designations for Samples, Standards, and Blanks.

Proj Date	pany: 8-Mat sot: Project 1 : October 17,	1 , 2012 8:	
	riment Des riment Desk	-	- C
Run No.	Sample Sec No.	APH (mg)	API2 CS
1.4	1	1,000	0.2500
1.6	4	1,000	0.2500
14	4	1.000	0.2500
2.4	1	2.000	0.9500
2.5	1	2.000	0.9500
24	1	2,000	0.9500
1.0	1	4.000	0.9600
2.5	1	4.000	0.9600
24	1	4.000	0.5600
6.8	1	5.000	0.4000
6.b	1	\$.000	0.4000
6.6	1	5.000	0.4000
	1	6.000	0.4500
i 4	4	6.000	0.4500
64 65 64	1	6.000	0.4500

5		1 -		°5/75	Indet							
PH	1 100100	12	121	0	9 [102] #20 [
Ap	ply Table Pi	elecer	C61	Sample Set M	tehod		-					
E	Plater/Well	Hj Vol (uL)	# of injs	Label	SampleName	Function	Method Set / Report Method	Run Time (Minutes)	Data Start (Minutes)	Next Inj. Delay (Minutes)	Column Position	Dikte
3				-	-	Condition Column	Example Sample Set 001_097	8.80	0.00	0.00	Postion 1	
2				1		Condition Column	Example Sample Set 001_098	6.80	0.00	0.00	Position 2	
3						Condition Column	Example Sample Set 001_099	8.80	0.00	0.00	Poston 3	
4						Condition Column	Example Sample Set 001_100	8.80	0.00	0.00	Position 4	
5						Condition Column	Example Sample Set 001_101	0.10	0.00	0.00	Position 1	
8						Equilibrate	Example Sample Set 001_101	10.00	0.00	0.00	No Change	
7	1,A,1	1.0	1	Unk-000-000	Blank - 1	Inject Samples	Example Sample Set 001_101	11.00	0.00	1.50		1.000
8						Condition Column	Example Sample Set 001_102	0.10	0.00	0.00	Position 2	10000
9				-		Equilorate	Example Sample Set 001_102	3.00	0.00	0.00	No Change	
10	1.A.1	1.0	1	UHK-000-000	Blank-2	Inject Samples	Example Sample Set 001_102	11.00	0.00	1.50		1.000
11						Condition Column	Example Sample Set 001_103	0.12	0.00	0.00	Position 3	
12					1	Equilibrate	Example Sample Set 001_103	3.00	0.00	0.00	No Change	
	1:A,1	1.0	1	Unk-000-000	Blank - 3	inject Samples	Example Sample Set 001_103	11.80	0.00	1.50		1.000
14						Condition Column	Example Sample Set 001_104	0.10	0.00	0.00	Postion 4	
15				-	· · · · · · · · · · · · · · · · · · ·	Equilibrate	Example Sample Set 001_104	3.00	0.00	0.00	No Change	
	1A1	1.0	1	Unk-000-000	Blank - 4	Inject Samples	Example Sample Set 001_104	11.00	0.00	1.50		1.000
17						Condition Column	Example Sample Set 001_001	0.10	0.00	0.00	Position 1	
18						Equilorate	Example Sample Set 001_001	3.00	0.00	0.00	No Change	
	1.A,Z	1.0	1	Unik-001-001	1	inject Samples	Example Sample Set 001_001	11.00	0.00	1.50		1.000
29				-		Condition Column	Example Sample Set 001_002	0.10	0.00	0.00	No Charige	
21						Equilibrate	Example Sample Set 001_002	3.00	0.00	0.00	No Change	
	1:A.2	1.6	1	Unk-001-002	2	Inject Samples	Example Sample Set 001_002	5.60	0.00	1.50		1.000
23					100	Condition Column	Example Sample Set 001_003	0.10	0.00	0.00	Postion 2	1000
24		-	1000	10 0		Equilibriana.	Evanue Eannia Sat 011, 003	3.05	8.00	0.00	Sin Channa	1000

Step 3 – CDS runs the Validation Experiment

FMV sequences run automatically on the CDS. **FMV** even enables you to include a Shutdown method as the last method run so that you can execute **FMV** sequences overnight while you sleep!

Step 4 – Fusion QbD Imports and Analyzes the Chromatogram Results

FMV automatically imports the required peak result data from the CDS, and re-maps the results to the design for automated analysis, graphing, and reporting. This is a key feature ensuring quality, as manual transcription is a common source of error and risk.

Respo	nse Name	Rea	ponse Units			
Amou	nt	Ing				
	Run	API 1 Target	API 1 Actual	API 2 Target	API 2 Actual	
1	1.a	1.000	1.003	0.2500		
2	1.6	1.000	1.01	0.2500		
3	1.c	1.000	1.012	0.2500		
4	2.a	2.000	1.995	0.3500		
5	2.6	2.000	1.99	0.3500		
6	2.c	2.000	2.004	0.3500		
7	3.a	4.000	3.998	0.3600		
8	3.6	4.000	4.002	0.3600		
9	3.c	4.000	3.997	0.3600		
	4.0	5,000	5.005	0.4000		
11	4b	5.000	4.992	0.4000		
12	4.c	5.000	5.009	0.4000		
	5.a	6.000	6.004	0.4500		
14	5b	6.000	6.003	0.4500		
15	5.c	6.000	5.997	0.4500		
4					OK Can	•

,	73nm@4.8nm	•	Compound 1
Compounds Available		Included	,
	_	Compou	nd 1
Response Data		, Included	
Available 4Sigma		Concent	ration
	_		ration

ICH Q2(R1). LINEARITY

... If there is a linear relationship, test results should be evaluated by appropriate statistical methods, for example, by calculation of a regression line by the method of least squares...

The correlation coefficient, y-intercept, slope of the regression line, and residual sum of squares should be submitted. A plot of the data should be included...:

- Correlation Coefficient
- Y Intercept
- Slope of the Regression Line
- Residual Sum of Squares
- Linear Regression Plot
- Residuals Data Table and Plot

same, Administrator company: Bakets Corporation Propert Propert 1 Date: Dobber 18, 2012 E51:37 PM PDT(DMT-67:00) Linearity and Range Report: API - Amount (mg)	S-Matrix,	Bance 1.000 St AP	f (print) = 0.12632 + (0.8021 x APQ			
		Residuels To	ible .				_
Insarity and Rance Date Table		Actual AR - Amazer (mg)	Parkent AR - Argun		Excitore	NOM OF REAL PROPERTY.	Tollow Peak /
Eun Targan AB Annai Annaire AB- Ea Ingi Ingi Annaire		100	0148	100	-0.004	-118	2.4
a -300 -300 -304		4.24	0.000	100	0.0007	1040	7
a 1.000 1.01 1.040		199	0333	08	10,0755		Pees
a 1,000 1,010 1,100		1 444	110001	1-04	10407	0.44	Fana
a 1.000 7.846 1.104		1.00	118-91	1100	11/10	2.66	Penn
a 2.000 * as 2.0ee		1204	110000	100	1000766	-0.24	Tel:
4 2300 2304 2348		1000	4.000	4778	1.047%	1.22	Free
a 1,000 2,000 1,110		4	1224-7	1287	0.00440	147	Pass
a 1.000 a 1.04 ³		1.00	426623	1.200	0.04276	5.4	Peen
a 1.000 2.00" 1.000		1000	10,000	110	0.04070	121	Peer
· 2000 2002 2-07		4.880	10000	191	0.00048	141	Peas
a 2000 x400 204x		1000	110004	1 mil	1010	2.38	Free
4 \$200 \$200 \$200		4204	4 20423	4400	-0.00420	14.84	Free
a 6.00 6.00 1.00		100	10000	Lain .	107-00	11.10	Frank
a \$200 \$200 \$2404		100	430144	4347	44.44	-624	Pass
Land Pane Taylor Land - 4.1 Wayne Land - market Wat Land -		Clearned Anoue	2 3 AP ADaria		·	Reported Tal Reported Tal 10% Coal Dy 10% Coal Lo	ter per Linit
Increasion ANOVA Medicine Table						-	
James // James // Page and // Superand // <th< td=""><td>-</td><td>4.9 2</td><td>*****</td><td>1 5</td><td></td><td> Mon.For % Bar L </td><td>ewLast </td></th<>	-	4.9 2	*****	1 5		 Mon.For % Bar L 	ewLast

FMV enables you to include images of representative chromatograms into your final reports. You can associate these chromatogram images with any of the individual results reports which **FMV** automatically generates,

ICH Q2(R1):

For chromatographic procedures, representative chromatograms should be used to demonstrate specificity, and individual components should be appropriately labeled. If DL is determined based on visual evaluation or based on signal-to-noise ratio, the presentation of the relevant chromatograms is considered acceptable for justification.

Imported Images	1	Report Assignments
LC Method Development Tutoral 2 - Predicted Best	A V	All Reports and Graphs Experiment Design Instrument Report Experiment Design Experiment Design Data Analysis All - Amount Accuracy Report F Linearly and Range Report Reportability Report
Run Label None Selected	-	Limit of Detection Report

Copyright (©) 2015 S-Matrix Corporation, All Rights Reserved.

Robustness Validation – DONE RIGHT!

Executionant Colum

Experiment Setup – Non LC Robustness

You define the parameters to include in the **FMV** robustness experiment. **FMV** will automatically generate a statistically rigorous and defensible robustness design. **FMV** will instantly analyze all variable effects and test them for robustness according to your

Mixture Variable Settings No. of Mixture Variables 0 •	Process Variable Settings No. of Process Variable	= 3 •			
Name	Units	Туре	Lower Bound	Upper Bound	
Initial Hold Time	Min	Continuous	•	20	5.0
G Variable C Constant	Units	Туре	Lower Bound	Upper Bound	
Temp Ramp Rate	Deg C/Mm	Continuous	-	10.0	20.0

Pass/Fail criteria for each method performance characteristic you include in the analysis.

Experiment Setup – LC Robustness

You select the parameters to include in the **FMV** robustness experiment. **FMV** will automatically generate the robustness design, re-construct it in the CDS as ready-to-run methods and sequence, import the chromatogram results directly from the CDS, re-map them to the robustness study, and instantly analyze, graph, and report the results.

Method Type Gradient 💌		
Available Variables	Included Variables	☐ Activate Online Preparation
Injection Volume Sample Concentration Detector Wavelength	Pump Flow Rate Gradient Slope Oven Temperature pH Column Type	Buffer Concentration Additive Concentration

The FMV Difference Lowers your Field Failure Risk

FMV robustness experiments let you use valid experiment ranges for accurate, defensible estimates of parameter effects.

This avoids the risks associated with setting ranges equal to the expected variation ranges of your instrument parameters.

Ð	periment Variable Maximum Expected Variation		
	Maximum Expected Variation:		Expected ±3// Variation Interval Around Setpoint for Each Variable
	The ±3 sigma value defines the "total" variation in the p (experiment variable) around its defined selpoint that is a occur on transfer and normal use due to statistically rand	xpected	C C C C C C C C C C C C C C C C C C C
	Experiment Variable	Units	Maximum Expected Variation (±3 🔺
	Pump Flow Rate	mL/min	
	Final % Strong Solvent	%	2
	Oven Temperature	°C	2
	•		
		<	Back Next>> Finish Cancel 🥝

FMV robustness analysis wizard lets you set:

- expected parameter variation ranges
- acceptable performance limits for each key response

The wizard then accurately determines and reports the method's true robustness.

Maximum Allowable Difference from Mean: The Maximum Allowable Difference limit values define the maximum differences from the mean for a given critical quality attribute (response) beyond which the response value is unacceptable. For the response to be considered robust in terms of the parameters evaluated, the valiation in the response measurements obtained in normal use must be encompassed by the Maximum Allowable Difference limit values.			Toerace With Data for a Owen Official Owen Anthuse
Enabled	Response	Maximum A	Allowable Difference from Mean
V	API - USPResolution	0.5	
V	API - Peak Retention Time	0.1	
 ▲ Select, 	All Select None		↓
		< < Bac	* Next>> Finish Cancel 🥝

Robustness Validation - Statistical Significance Testing - Model Coefficients

Robustness Report: API - Area (*)

Coded Variable Name Key

Coded Variable Name	Actual Variable Name		
A	Initial % Organic		
В	Oven Temperature		
с	pН		

Variable Effects Table - Statistical Significance

Model Term	Robustness Testing Range (Coded)	Coefficient Value	Predicted Effect	Effect Standard Error	Effect t statistic	Pass/Fail
С	0.4000	161,391.4753	64,556.59	13,911.0838	4.6407	Fai
в	0.8000	74,520.8782	59,616.70	13,794.1618	4.3219	Fai
A	0.8000	-47,297.1750	-37,837.74	14,136.9455	-2.6765	Fai
(A) ²	0.1600	-124,093.0600	-19,854.89	14,136.9455	-1.4045	Pass
(B) ²	0.1600	64,847.5165	10,375.60	13,794.1618	0.7522	Pass
B*C	0.1600	50,247.7248	8,039.64	13,714.4961	0.5862	Pass
A*B	0.3200	-9,783.1120	-3,130.60	13,874.0259	-0.2256	Pass
A*C	0.1600	-13,383.4646	-2,141.35	14,022.6463	-0.1527	Pass
(C) ^a	0.0400	32,821.4015	1,312.86	13,911.0838	0.0944	Pass

Maximum Allowable Value: |Predicted Tolerance Limit t statistic| < 2.2622 for each variable studied

Robustness Validation – Practical Significance Testing – Effects Magnitude

Automated LC Method Validation – Proven ROI

International Pharma Co. Benchmarking Project

Realized Time Savings = 85%.

Using historical records* and adjusting for project complexity

Minimum Expected Time Savings = 60%.

Copyright (©) 2015 S-Matrix Corporation, All Rights Reserved.

S-Matrix Software Products and Support

S-Matrix Corporation develops advanced Design of Experiment based-software that automates R&D experimental work according to Quality-by-Design principles and methodologies. S-Matrix's Fusion QbD platform automates and redefines experimentation in Analytical R&D, Chemical and Process R&D, Formulation, and Product R&D.

Fusion QbD Software System Product Suite

Fusion LC Method Development

Fully automated QbD experimenting on your LC system, integrated DOE, automated robustness simulation & chromatography data modeling. Chemistry screening without the need for peak tracking.

Fusion Analytical Method Validation

Meet regulatory guidelines with a best-practices approach toward LC method validation with comprehensive reporting. Also supports formal validation of Non-LC methods (e.g. GC, CE, Q-NMR).

Fusion Inhaler Testing

Create sampling plans, export and import data from your CDS via validated data exchange, calculate particle size distribution results, and generate reports according to USP 601, Ph.Eur. 2.9.18, and ISO 27427.

Fusion Product Development

The perfect QbD software for formulation & product development – automated experimental design selection, sophisticated analysis tools, including automated modeling and simulation, comprehensive reporting, with a full 21 CFR 11 compliance toolset.

Sales and Support

Sales: Tel: 800-336-8428 (Outside the USA: 707-441-0406). Email: <u>Sales@smatrix.com</u> Customer Support: Tel: 707-441-0407. Fax: 707-441-0410. Email: <u>Support@smatrix.com</u>

On-site and Web Training

S-Matrix offers on-site training programs for installed systems. Training includes experiment strategies, experimental design (DOE), data analysis, graphical visualization and ranking of effects, numerical and graphical optimization, and QbD Reporting.

S-Matrix also offers interactive web training which covers software features and operation, along with general principles of DOE and QbD. Web training programs can be tailored to suit your individual focus and information requirements.

To arrange an on-site or web-based training program, call 707-441-0406.

All trademarks are the property of their respective owners

S-Matrix Corporation 1594 Myrtle Avenue Eureka, CA 95501 USA <u>www.smatrix.com</u>