Screening and Optimization Designs to Improve Method Performance and Robustness

John F. Kauffman, Ph.D.
Daniel J. Mans, Ph.D.
FDA Division of Pharmaceutical Analysis
IFPAC 2015

Disclaimer:
The findings and conclusions in this presentation have not been formally disseminated by the Food and Drug Administration and should not be construed to represent any Agency determination or policy.
Research Problem Statement

- FDA will develop a method using the QbD paradigm, and transfer the method to an EMA lab.
 - Begin with a harmonized compendial method and apply QbD concepts to improve the method
 - Method: HPLC analysis of sildenafil and analogues of sildenafil
Sildenafil and some Analogues

\[
\begin{align*}
R^1 &= \text{Me}; \quad R^2 = \text{H} \quad \text{Sildenafil} \\
R^1 &= \text{CH}_2\text{CH}_3; \quad R^2 = \text{H} \quad \text{homosildenafil} \\
R^1 &= \text{CH}_2\text{CH}_2\text{OH}; \quad R^2 = \text{H} \quad \text{Hydroxyhomosildenafil} \\
R^1 &= \text{H}; \quad R^2 = \text{H} \quad \text{N-desmethylsildenafil} \\
R^1 &= \text{H}; \quad R^2 = \text{CH}_3 \quad \text{N-desmethylsildenafil} \\
R^1 &= \text{cyclopentyl}; \quad R^2 = \text{H} \quad \text{Cyclopentynafil}
\end{align*}
\]

Pre-existing analogue library prepared for rapid screening surveillance program; Harmonized Method exists
Example ATP

• The method will separate 6 compounds with high specificity (HPLC resolution ≥ 1.5)
• Quantify each compound at levels from 25 ug to 100 mg per gram of finished product.
 – Multiple dilutions may be required
• Repeatability: $\leq 2\%$ over six replicates
• Accuracy: within $\pm 15\%$ of the true value at 25 ug and within $\pm 2\%$ of the true value at 100 mg, with 95% confidence.
Starting Point: USP Method for Sildenafil

- Isocratic: 57/28/15 Buffer/Methanol/CH$_3$CN (Buffer = Phosphoric acid, pH 3 with triethylamine)
- C18 column
- 30 °C
- Poorly separated: 6 compounds \rightarrow 3 peaks
Initial Studies: Mobile Phase Evaluation

- Change from Isocratic to Gradient (A=Buffer, B=MeOH/CH₃CN)? Remove CH₃CN? Remove Methanol?

A=Buffer B=MeOH/CH₃CN (25/17) Marginal improvement

A=Buffer B=MeOH

A=Buffer B=ACN
Summary and Conclusion of Initial Screen

- 6 columns screened (4 C18, 2 PFP): Results did not conform with theoretical expectations
- Varied combinations of mobile phases and gradient times
- Began to investigate pH effects: 4.5 vs. 3.0
 → affords separation of the 6 components but does not meet criteria of the ATP
- Time consuming and tedious one-variable-at-a-time conventional approach. Difficult to keep track of numerous generated method files.
A Systematic QbD Approach

- Develop screening designs to evaluate diverse method options
- Use DOE methodology to predict optimal conditions
- Use statistical analysis to determine ranges of acceptable operating parameters - Robustness
- Implemented using S-Matrix Fusion QbD Software
Three Screening Designs

1. Broad screen of 3 columns, 2 organic phases, pH and gradient time. (37 experiments)
 - Purpose: Identify the best column, pH range

2. Fix column and screen 2 organic phases, most promising pH range, gradient time (19 experiments)
 - Purpose: Select most promising organic phase, further narrow pH range

3. Fix column and organic phase, screen pH, gradient time, column temperature (16 experiments)
 - Purpose: Final method, operable design region
Screen 1: Best Column (37 Experiments)

- **Columns**: analytical columns of same ID and length from same supplier
- **Mobile Phase**
 - MeOH and ACN
 - 10 mM buffer @ pH 4.0, 5.0, 6.0, 7.0, 8.2
- **Gradient Time**: 4-20 minutes (10-55% organic)
- **Fixed column temperature** (30 °C)
Column Screening: A Few Examples

- Low pHs (3.0, 4.0) gave the least # peaks (recall USP pH 3.0)

pH 4.0
Phenylhexyl
20 min gradient
MeOH

pH 4.0
C18
20 min gradient
ACN
Column Screening: A Few Examples

- Constant: pH 5.0, MeOH, 12 min gradient

PFP

C18

Phenylhexyl
Column Screening: A Few Examples

- Constant: pH 5.0, ACN, 12 min gradient
Number of peaks with resolution ≥ 2: ACN Phenylhexyl

Modeling predicts pH ~ 6-6.5 optimal for ACN with 10-17 min gradient times (using the resolution ≥ 2.00 metric)
Number of peaks with resolution ≥ 2: MeOH Phenylhexyl

Modeling predicts pH 5.5-6.0 optimal for MeOH with 10-17 min gradient times
By comparison PFP and C18 have about 4 peaks with resolution ≥ 2.00

MeOH PFP

MeOH C18

Best Overall Answer: Phenylhexyl
Screen 2 (19 Experiments)

- Phenylhexyl column
- pH 5.0, 5.5, 6.0, 6.5
- ACN vs. MeOH
- Gradient Time: 4-20 minutes (10-55% organic gradient)
Number of peaks with resolution ≥ 2: ACN Phenylhexyl
Number of peaks with resolution ≥ 2: MeOH Phenylhexyl
- Phenylhexyl elution order of Peaks 2 & 3 (L→R) changes between MeOH and ACN
- Peak Areas also change
- Both solvents viable for the ATP, ACN chosen for # plates, sharpness of peaks, and slightly better resolution
Screen 3 (16 Experiments)

- Phenylhexyl & ACN constant
- pH 5.90, 6.10, 6.30, 6.50
- Column temp 30, 35, 40, 45 °C
- Gradient Time: 10-20 minutes (10-55% organic gradient)
Sample of Screen 3 Experiments

<table>
<thead>
<tr>
<th>Run No.</th>
<th>Sequence No.</th>
<th>Gradient Time</th>
<th>Oven Temperature</th>
<th>pH</th>
<th>No. of Peaks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition Column - 1</td>
<td>1</td>
<td>2</td>
<td>30</td>
<td>5.9</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>20</td>
<td>30</td>
<td>5.9</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>10</td>
<td>30</td>
<td>5.9</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>10</td>
<td>30</td>
<td>5.9</td>
<td>6</td>
</tr>
<tr>
<td>Condition Column - 2</td>
<td>1</td>
<td>2</td>
<td>35</td>
<td>6.11</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>15</td>
<td>35</td>
<td>6.11</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>15</td>
<td>35</td>
<td>6.11</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>17.5</td>
<td>35</td>
<td>6.11</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>12.5</td>
<td>40</td>
<td>6.11</td>
<td>6</td>
</tr>
<tr>
<td>Condition Column - 3</td>
<td>1</td>
<td>2</td>
<td>45</td>
<td>5.9</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>15</td>
<td>45</td>
<td>5.9</td>
<td>5</td>
</tr>
<tr>
<td>Condition Column - 4</td>
<td>1</td>
<td>2</td>
<td>45</td>
<td>6.11</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>20</td>
<td>45</td>
<td>6.11</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>10</td>
<td>45</td>
<td>6.11</td>
<td>6</td>
</tr>
<tr>
<td>Condition Column - 5</td>
<td>1</td>
<td>2</td>
<td>45</td>
<td>6.11</td>
<td></td>
</tr>
<tr>
<td>Condition Column - 6</td>
<td>2</td>
<td>2</td>
<td>30</td>
<td>6.51</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>15</td>
<td>30</td>
<td>6.51</td>
<td>6</td>
</tr>
</tbody>
</table>
35 °C
pH 6.5
20 min gradient

Resolution L→R (2-6)
5.68, 3.62, 2.54, 5.66, 15.77
Example of a Resolution Model Eqn.

- Peak 3 resolution
 \[R = 3.0607 + 0.4109(GT) - 0.3367(Temp) - 0.7772(pH) - 0.2013(pH)^2 \]
Example of a Resolution Model Eqn. Predicted Response
Analysis of Robustness

• Method capability: Resolution criteria
 \[C_{pk} = \frac{R - LSL_{ATP}}{3\sigma} \]
 \(\sigma = \text{response standard deviation} \)

• Monte Carlo simulation using model equation estimates \(\sigma \) for specified response
 – pH ± 0.1, Temp ± 2°C, Gradient ± 0.25 min
 – Normally distributed

• Require \(C_{pk} \geq 1.33 \rightarrow R - 1.5 \geq 4\sigma. \)
C\textsubscript{pk} of Res\textsubscript{1-2} : Range = 0 - 1.75, Robust region at surface ridge, sensitive to pH*Temp.

C\textsubscript{pk} of Res\textsubscript{3-4} : Range > 16, linear in pH but not Temp.
Method Robustness: Operable Region

- Corners: $C_{pk} = 1.33$ for Resolutions 2, 3 and 4
- Ranges: pH 6.30 ± 0.1, Gradient 18.5 ± 0.5 min, Temp 42 ± 2 °C
Optimal Conditions

• Phenylhexyl is the best column
 – Literature methods use C18

• Acetonitrile gives best peak shape and resolution.
 – MeOH/Phenylhexyl can support a method that meets the ATP. This is extremely useful information for method understanding

• Gradient time, pH, column temperature have been optimized
Future Work and Interesting Questions

• Method validation for quantitative work
• Further exploration of method robustness and ruggedness
• Designing methods and models that incorporate multiple columns and organic phases
Acknowledgements

• Sergey Arzhantsev: IT support
 – Making Fusion work with Agilent ChemStation implemented on OpenLab ECM
• Richard Verseput: S-Matrix support
• Cindy Buhse: Acting Director, CDER/OPQ Office of Testing and Research
Thank You!