

Mapping Key Elements in the ICH Q14 and USP <1220> Guidances to an Enhanced Workflow for Analytical Procedure Development

> Richard Verseput S-Matrix Corporation www.smatrix.com

© 2024 S-Matrix Corporation. All Rights Reserved.

Referenced Guidance Documents

PC ICH harmonisation for better health	Charmonisation for better health	Printed or: Thu Mir 07 2024, 044223 PMEST) Status: Converte/r Official on 07-Mar-2024 Decid OutD-3507E4/TE-45E5-44874MCC-4056F422022 L2, an-U5 Document Type: GENERAL CHAPTER @2024 USPC DOI: Net 44mba Document Type: GENERAL CHAPTER & 2024 USPC DOI: Net 44mba Document Type: GENERAL CHAPTER & 2024 USPC DOI: Net 44mba Document Type: GENERAL CHAPTER & 2024 USPC DOI: Net 44mba Document Type: GENERAL CHAPTER & 2024 USPC DOI: Net 44mba Document Type: GENERAL CHAPTER & 2024 USPC DOI: Net 44mba Document Type: GENERAL CHAPTER & 2024 USPC DOI: Net 44mba Document Type: GENERAL CHAPTER & 2024 USPC DOI: Net 44mba Document Type: GENERAL CHAPTER & 2024 USPC DOI: Net 44mba Document Type: GENERAL CHAPTER & 2024 USPC DOI: Net 44mba Document Type: GENERAL CHAPTER & 2024 USPC DOI: Net 44mba Document Type: GENERAL CHAPTER & 2024 USPC DOI: Net 44mba Document Type: GENERAL CHAPTER & 2024 USPC DOI: Net 44mba Document Type: GENERAL CHAPTER & 2024 USPC DOI: Net 44mba Document
INTERNATIONAL COUNCIL FOR HARMONISATION OF TECHNICAL REQUIREMENTS FOR PHARMACEUTICALS FOR HUMAN USE ICH HARMONISED GUIDELINE	INTERNATIONAL COUNCIL FOR HARMONISATION OF TECHNICAL REQUIREMENTS FOR PHARMACEUTICALS FOR HUMAN USE ICH HARMONISED GUIDELINE	INTRODUCTION This general chapter holistically considers the validation activities that take place across the entire life cycle of an analytical procedure and provides a framework for the implementation of the life cycle approach. The analytical procedure life cycle approach described here is consistent with the quality by design concepts described in International Council for Harmonisation (CH) guidelines. The procedure life cycle approach emphasizes the importance of sound scientific approaches and quality risk management for the development, control, establishment, and use of analytical procedures. Total error is used in this chapter, however, measurement uncertainty can also be used. The procedure life cycle approach is applicable to all types of analytical procedures is used. Bernets of the is cycle approach can also be applied retrospectively if deemed useful or in easily stages of development with the complexit. Can also be applied retrospectively if deemot useful or in easily stages of development with the approach can also be applied retrospectively if deemot question in easily stages of development with the appropriate modifications. Bernets of life cycle approach can also be applied retrospectively if deemot question in easily stages of development with the appropriate modifications.
ANALYTICAL PROCEDURE DEVELOPMENT Q14 Final Version	VALIDATION OF ANALYTICAL PROCEDURES Q2(R2) Final Version	In the bridge into allocities (conductive for instructive, 12A and 12A), is established, through laboratory studies, that the performance valuation of an analytical procedure is the process by which any procedure algorithm, the analytical procedure is a studies, that the performance of the intended purpose, takes place during the entire procedure life cycle, beginning during the initial procedure is suitable for the intended purpose, takes place during the entire procedure life cycle, beginning during the initial procedure sign activities and extending through routine use. These activities include the formal procedure validation, verification, and transfer of procedures is a vell as establishing and assuring adhrence to an appropriate set of procedure controls and system suitability requirements. The procedure life cycle is comprised of the analytical target profile (ATP) and three stages, which are introduced below and shown in figure 1. The ATP definish the criteria for the procedure performance characteristics that are linked to the intended analytical on and the quality attribute to be measured. It applies to all stages of the procedure value generated using a qualified analytical analytical angle controls and system for the intended analytical analytical angle controls. The ATP definish the regionation was since the reportable value generated using a qualified analytical distribute to be measured. It applies to all stages of the procedure life cycle. For quantitative procedures, the ATP describes the regionative life cycle of the analytical analytical analytical analytical analytical analytical analytical analytical distribute to the target during dur
Adopted on 1 November 2023	Acopted on 1 November 2023	 ATP citieria. Stage 1: Procedure design encompasses procedure development, which consists of the analytical technology and sample preparation. It includes understanding gained through knowledge gathemis, systematic procedure development experiments, and risk assessments and associated ta be experiments. The outplut of Stage 7 includes: A set of procedure conditions that minimizes procedure bias to a suitable level, can provide acceptable precision, and can meet the ATP criteria A nunderstanding of the effect of procedure parameters (e.g., temperature, wavelength, flow rate, etc.) on procedure performance characteristics of the analytical technology and sample and state processing and the system performance characteristics of the analytical performance and the performance development and statege for Statege 1. Procedure performance qualification consists of studies designed to demonstrate that the procedure is suitable for its intended purpose. This involves confirmation that the reportable values generated dural statege for suitable of analytical control strategy to analytical generated duraling Stage 7 can be used if available and suitable. At the end of statege 2, the repications trategy and the performance of the procedure is confirmed to matcher of the analytical procedure. The and other criteria. Monitoring ensures that the performance dural technologies of the analytical procedure. Confirming the deferrent consult and all in identifying required changes for the analytical a
This Guideline has been developed by the appropriate ICH Expert Working Group and has been subject to consultation by the regulatory parties, in accordance with the ICH Process. At Step 4 of the Process the final draft is recommended for adoption to the regulatory bodies of ICH regions.	This Guideline has been developed by the appropriate ICH Expert Working Group and has been subject to consultation by the regulatory parties, in accordance with the ICH Process. At Step 4 of the Process the final draft is recommended for adoption to the regulatory bodies of ICH regions.	https://online.usprf.com/usprfitdocument/1_GUID-3507E47E-45E5-4987-840C-4098FA230821_2_on-US 1/12

Abstract

This presentation will discuss the following key elements within the USP <1210>, USP <1220>, and ICH Q14 guidances which provide a new framework and workflow for analytical procedure development within the context of developing a robust LC method :

1. Analytical Target Profile (ATP)

A Negotiated Specification

2. Design of Experiments (DOE, DoE)

Guided by Risk Assessment

- 3. Method Operable Design Region (MODR) Quantitative Robustness Integration
- 4. Replication Strategy Optimization

Meeting the ATP Performance Requirements

S-Matrix.

ICH Q14 – Analytical Procedure Lifecycle

Analytical Target Profile

Analytical Target Profile (USP <1220>

The ATP is based on the intended use for the procedure and, for quantitative or semi-quantitative procedures, should include upper limits on the precision and accuracy (bias) of the reportable value.

Example 2: The procedure must be able to quantify [analyte] in a range from [A units] to [B units] in the [description of test article] in the presence of [x, y, z] so that the distribution of the total analytical error of the reportable value falls within the total allowable analytical error range of ± [C%]. Replication Strategy

Total Analytical Error (TAE)

USP <1220>

Total analytical error (TAE) represents the overall error in a test result that is attributed to imprecision and inaccuracy; TAE is the combination of both systematic error of the procedure and random measurement error.

Two Critical Considerations:

- 1. The Negotiated Total Analytical Error (TAE) Allowance for the Analytical Method.
- 2. The Integration of Precision and Bias into a single Interval Metric USP <1210>.

3. ACCURACY AND PRECISION

USP (1210) Statistical Tools for Procedure Validation

3.2 Combined Validation of Accuracy and Precision

An underperforming method can <u>pass</u> System Suitability for the Critical Method Attribute being evaluated when Accuracy (β – bias) and Precision (σ – precision) are assessed separately = High Risk Approach.

3. ACCURACY AND PRECISION

USP (1210) Statistical Tools for Procedure Validation

3.2 Combined Validation of Accuracy and Precision

As the illustration below shows – the method does not have acceptable System Suitability performance for the Critical Quality Attribute (CQA) being tested when both Accuracy (β – bias estimation) and Precision (σ – variation estimation) are assessed together = Low Risk Approach.

Guard Bands acknowledge the presence of Bias and Precision Limits and the need to incorporate a characterized TAE into the "Acceptance Zone".

Total Analytical Error

Acceptance Zone is narrower to incorporate the characterized TAE.

Total Analytical Error Distribution

Production: Amount of Precision-to-Tolerance (P/T) Ratio Available for the Analytical Method

- API method has a tolerance range of 4.0% (i.e., 98.0% to 102.0%)
- Analytical method allowance = 30% of the P/T ratio using a 95% confidence interval.

USP (1220) Analytical Procedure Life Cycle

 $2\sigma_{max} = 0.60$

Selected Analytical Procedure = LC:

Combined Bias and Precision Allowance Becomes the ATP Quantitation Performance Metric:

- Robust Method Optimization
- Replication Strategy Optimization

ICH Q14 – Analytical Procedure Lifecycle

Risk Assessment

ICH Q14

Risk assessment and prior knowledge should be used to identify analytical procedure parameters, attributes and associated ranges to be investigated experimentally. Categorical variables (e.g., different instruments) can also be considered as part of the experimental design.

USP <1220>

For variables where there may be higher risk, one way to reduce risk is to gain additional knowledge about the influence of those parameters using modeling and/or experimentation.

Sources of Risk for Bias and Variation

				CM	IAs			Category
Element	Presumed CMPs			•				(C, N, X)
		Resolution USP	S/N	Tailing USP	Area % RSD - API	K-Prime - 1st Peak	K-Prime - Last Peak	
	Column Type	5	1	1	3	5	5	X-S
Chemistry	Strong Solvent	5	1	1	3	5	5	X-S
	Aqueous solvent	5	5	5	1	5	5	X-S
	рН	5	5	5	3	5	5	X-S-O
	Pump Flow Rate	3	1	5	3	5	5	Х-О
Process	Injection Volume	3	5	3	5	1	1	С
	Oven Temperature	5	1	3	3	5	5	Х-О
Gradient	Initial Hold Time	1	1	1	1	5	1	C-O
Program	Gradient Slope	5	1	5	3	5	5	X-S-O
	Wavelength	5	5	1	5	1	1	С
Detection	Sampling Rate	3	5	1	5	1	1	С
	Precision	1	3	1	3	1	1	С

C = Controlled Factor, N = Noise Factor, X = eX perimental Factor (S = S creening, O = O ptimization)

Impact Severity Low = 1 Medium = 3 High = 5

1

S-Matrix

Design of Experiments (DOE, DoE)

ICH Q14

In an enhanced approach, the ranges for the relevant parameters and their interactions can be investigated in multivariate experiments (DoE).

USP <1220>

Experimentation is a direct way of generating data that can be used to assess the impact of procedure parameters on performance, and the use of statistical design of experiments (DOE) is an effective way to do this.

DoE (DOE) – A Model Building Methodology

DoE uses Statistical Sampling of All Possible Combinations to Support

Accurate Estimation of Study Factor Effects

$$R_{S} = b_{0} + b_{1}(x1) + b_{2}(x2) + b_{11}(x1)^{2} + b_{22}(x2)^{2} + b_{12}(x1 * x2)$$

DoE (DOE) – A Model Building Methodology

Method Parameter	Study Range
рН	2.70 - 4.90
Gradient Time (min)	10.0 – 25.0
Column Type	BEH C18
	BEH Shield RP18
	HSS T3
	CSH Phenyl-Hexyl

Prior knowledge (from original monograph) incorporated into Selected Column and Chemistry Study Factors and Range.

Fusion QbD Experiment Automation – Export to Empower

Edit	timizat View	tion in Help	S-Matrix\Inte	rnal Developn	nent\FMD	NRD2 - Optimization	i - 9_9_0 as System/Administrator	r - Sample Set IV	lethod Editor								_	
_ 	3	HE 📑 +	оран н Ван-с- Ра	X Pa f	Apply	v Table Preferences	Sample Set Method		~									
Plate/Wel	Inj Vol (uL)	# of Injs	Label	SampleName	Level	Function	Method Set / Report or Export Method	Label Reference	Processing	Run Time (Minutes)	Data Start (Minutes)	Next Inj. Delay (Minutes)	MS Tune Method	MS Calibration Method	Column Position	Auto Additions	SampleWeight	Dilutior
	1			,,		Condition Column	RD2 Optimization 001_031			6.60					Position 5			
						Equilibrate	RD2 Optimization 001_001			4.00					No Change			
1:A,1	2.0	1	Unk-001-001	1		Inject Samples	RD2 Optimization 001_001		Normal	17.60	0.00	3.50					1.00000	1.0000
						Equilibrate	RD2 Optimization 001_002			4.00					No Change			
1:A,1	2.0	1	Unk-001-002	2		Inject Samples	RD2 Optimization 001_002		Normal	9.60	0.00	3.50					1.00000	1.0000
						Equilibrate	RD2 Optimization 001_003			4.00					No Change			
1:A,1	2.0	1	Unk-001-003	3		Inject Samples	RD2 Optimization 001_003		Normal	17.60	0.00	3.50					1.00000	1.0000
						Equilibrate	RD2 Optimization 001_004			4.00					No Change			
1:A,1	2.0	1	Unk-001-004	4		Inject Samples	RD2 Optimization 001_004		Normal	9.60	0.00	3.50					1.00000	1.0000
						Equilibrate	RD2 Optimization 001_005			4.00					No Change			
l:A,1	2.0	1	Unk-001-005	5		Inject Samples	RD2 Optimization 001_005		Normal	9.60	0.00	3.50					1.00000	1.000
						Equilibrate	RD2 Optimization 001_006			4.00					No Change			
:A,1	2.0	1	Unk-001-006	6		Inject Samples	RD2 Optimization 001_006		Normal	9.60	0.00	3.50					1.00000	1.000
						Equilibrate	RD2 Optimization 001_007			4.00					No Change			
:A,1	2.0	1	Unk-001-007	7		Inject Samples	RD2 Optimization 001_007		Normal	17.60	0.00	3.50					1.00000	1.000
						Condition Column	RD2 Optimization 001_032			6.60					Position 5			
						Equilibrate	RD2 Optimization 001_008			4.00					No Change			
A,1	2.0	1	Unk-001-008	8		Inject Samples	RD2 Optimization 001_008	_	Normal	13.60	0.00	3.50					1.00000	1.000
						Condition Column	RD2 Optimization 001_033	_		6.60					Position 5			
						Equilibrate	RD2 Optimization 001_009			4.00					No Change			
A,1	2.0	1	Unk-001-009	9		Inject Samples	RD2 Optimization 001_009	_	Normal	9.60	0.00	3.50					1.00000	1.000
						Equilibrate	RD2 Optimization 001_010	_		4.00					No Change			
:A,1	2.0	1	Unk-001-010	10		Inject Samples	RD2 Optimization 001_010	_	Normal	9.60	0.00	3.50					1.00000	1.000
						Equilibrate	RD2 Optimization 001_011	_		4.00					No Change			
:A,1	2.0	1	Unk-001-011	11	_	Inject Samples	RD2 Optimization 001_011	_	Normal	17.60	0.00	3.50					1.00000	1.000
						Equilibrate	RD2 Optimization 001_012	_		4.00					No Change	_		
I:A,1	2.0	1	Unk-001-012	12	_	Inject Samples	RD2 Optimization 001_012	_	Normal	17.60	0.00	3.50					1.00000	1.000
						Condition Column	RD2 Optimization 001_034			6.60					Position 5			
·A 4	2.0	4	Upk 001 013	12		Equilibrate	RD2 Optimization 001_013		Normal	4.00	0.00	2.50			NO Change		1.00000	1.000
. , i	2.0	1	011K-001-013	13		Condition Column	RD2 Optimization 001_013		worman	13.60	0.00	3.50			Depition 5	100	1.00000	1.000
						Equilibrate	RD2 Optimization 001_035			0.00					No Change			
A 1	2.0	4	Upk 001-014	14		Inject Samples	RD2 Optimization 001_014		Normal	4.00	0.00	3.60			No Change	<u></u>	1 00000	1.000
.A, I	2.0	1	011K-001-014	14		Equilibrate	RD2 Optimization 001_014		worman	13.60	0.00	3.50			No Change		1.00000	1.000
• 1	20	4	Upk 001 015	15		Inject Samples	PD2 Optimization 001_015		Normal	4.00	0.00	3.60			no change		1 00000	1.000
	2.0		0111-015	10		Fauilibrate	PD2 Optimization 001_019		worman	4.00	0.00	3.30			No Change		1.00000	1.000
1.0.1	20	4	Upk 001 016	16		Inject Samples	PD2 Optimization 001_016		Normal	4.00	0.00	3.60			No Change		1 00000	1.000
	2.0		0118-001-010	10		Equilibrate	RD2 Optimization 001_010		Norman	5.00	0.00	3.30				100	1.00000	1.000

Fusion QbD Experiment Automation – Import from Empower

Screening Study – Simple Analysis

Screening Study – Simple Analysis

Method Parameter	Study Range			
Pump Flow Rate (mL/min)	0.35 – 0.55			
Column Oven Temperature (°C)	40.0 - 50.0			
Gradient Time (min)*	8.0 - 16.0			
рН	3.60 - 4.20			
Column Type	CSH Phenyl-Hexyl			

Light green background color indicates result obtained from screening study.

 $* - t_{G}$ range adjusted to maintain slope range with new endpoint of 50% ACN.

S-Matrix. PeakTracker[™] – UV & MS Data Based Tracking

Traditional Resolution Map – 2D

Resolution Map – Rotatable 3D

Mean Performance Only MODR – Overlay

Mean Performance:

- Resolution
- K-Prime

S-Matrix.

- Tailing
- Area %RSD
- Etc.

Integrated Robustness Simulation

ICH Q14

Data gained during the development studies (e.g., robustness data from a design of experiments (DoE) study) could be used as part of the validation data for the related analytical procedure performance characteristics and studies do not necessarily need to be repeated.

USP <1220>

In some cases, it is helpful to demonstrate robustness of the procedure by developing models that describe the effect of parameters on the performance of the procedure, ... This knowledge also enables the determination of robust operation regions for procedure parameters and, if desired, a method operable design region (MODR).

Monte Carlo Robustness Simulation

Wizard Page 1 – Define Maximum Expected Variation in Study Parameters

1	Variable S	Settings			~
	Enabled	Experiment Variable	Units	Maximum Expected Variation (±3σ Value)	
l		Pump Flow Rate	mL/min	0.020	
l		Oven Temperature	°C	3.0	
l		рН	*	0.15	
l		Mobile Phase Composition (MPC)*	%	2.0	
l					~
	* - M The	PC variation is composition (blend) variation due to value you enter will be applied to all Gradient Slope	pump precision limits. A commonly used ±3σ value = factors (e.g., Time, Slope, and Ramp Steps) in the	= ±2.0%. experiment design.	

Go beyond development LC system

expected variation in QC lab across LC systems during routine use.

Monte Carlo Robustness Simulation

Wizard Page 2 – Define Failure Mode and Spec Limits

Response	: Settings						Additional Error	ion 2 Sigma 🗸
Enabled	Response	Robustness Index	Specification Limit Delta (±)	LSL	USL	Target	Additional Error	Additional Error Amount (±10 Value)
	Rs-Map Response	Cpk	~	1.500				
	B - RetentionTime	Cpk	~	1.00				
	API - USPTailing	Cpk	¥.		1.50			
	A - ResolutionW50	Cpk	~	1.500)	1		
	API - ResolutionW50	Cpk	~	1.500	1			
	D-Deg - ResolutionW50	Cpk	~	1.500				
M	E - ResolutionW50	Cpk	~	1.500		/		

Monte Carlo Robustness Simulation

Multi-Response Overlay View

4-Factor Method Operable Design Region (MODR).

- MODR (unshaded region) methods are robust for all CQAs.
- Rectangle independently adjustable ranges within which permanent postapproval changes can be made while maintaining robust performance for all CQAs.

Replication Strategy Optimization

ICH Q14

Reportable Result: the result as generated by the analytical procedure after calculation or processing and applying the described sample replication. *(ICH Q2)*

ICH Q2(R2)

The experimental design of the validation study should reflect the number of replicates used in routine analysis to generate a reportable result.

USP <1220>

Stage 1:

Optimization of performance characteristics of the analytical procedure such as accuracy, precision, ...; this includes a preliminary replication strategy for samples and standards.

Replication Strategy for the Reportable Value

🕼 Method Development - Untitled1						
<u>File Edit Activity Tools Window H</u>	<u>H</u> elp					
🗅 🖻 😂 🖫 🎒 📕 🍎 🔳 🙎	🛿 Select Autosampler Tray 🧉 Update Setu	up Data 🏾 🗐 Generate Design 🔞				
Design of Experiments	Project Name Project 1	Experiment Name Experiment 1	Instrument Name Notes Fusion QbD H_Class	Experiment Phase Method Development	Experiment Type Replication Strategy	Separation Mode Reversed Phase (RPC)
Data Entry / Analysis - • Data Entry • Data Analysis Reporting Toolkit • Fusion Reporter • Audit Log Reporter	Global Sample Settings	same vial				
	Name Preparation replicates per sample	No. of Levels 5 Level Level Level Level Level	Level setting Level setting P P P P P P P P P	- <u>1</u> - <u>2</u> - <u>3</u> - <u>4</u> - <u>5</u>		
	Name Injections per preparation replicate	No. of Levels 5 Level Level Level Level Level Level Level	Level setting	- <u>1</u> -2 -3 -4 -5		

S-Matrix.

Production: Amount of Precision-to-Tolerance (P/T) Ratio Available for the Analytical Method

- API method has a tolerance range of 4.0% (i.e., 98.0% to 102.0%)
- Analytical method allowance = 30% of the P/T ratio using a 95% confidence interval.

S-Matrix. Replication Strategy for the Reportable Value

0.4537

0.4906

0.4240

0.3995

0.3788

Between Variables Components of Variation

Variable Name	Variance	Standard Deviation	Degrees of Freedom	t-table Value	(+/-) 95% Confidence Limits	Error Contribution (%)
Sample Preparation	0.065	0.256	4	2.7764	0.71	95.27
Injection	0.003	0.057	20	2.0860	0.11	4.73

Overall Error in a Single Determination

Statistic	Value
Mean	100.142
Variance	0.069
Standard Deviation	0.262
% RSD	0.262

No. of Injections					No.	of Prepa	rations				
		1	2	3	4	5	6	7	8	9	10
-	±2σ	0.7517	0.531	0.4340	0.3759	0.3362	0.3069	0.2841	0.2658	0.2506	0.237
1	т.і.	1.7228	1.055	0.8121	0.6810	0.5968	0.5372	0.4922	0.4568	0.4280	0.404
2	±2σ	0.7428	0.5252	0.4288	0.3714	0.3322	0.3032	0.2807	0.2626	0.2476	0.234
	T.I.	1.4742	0.9516	0.7506	0.6383	0.5646	0.5115	0.4709	0.4387	0.4122	0.390
3	±2σ	0.7398	0.5231	0.4271	0.3699	0.3308	0.3020	0.2796	0.2615	0.2466	0.233
	T.I.	1.3843	0.9156	0.7296	0.6239	0.5537	0.5028	0.4638	0.4326	0.4069	0.385
4	±2σ	0.7383	0.5220	0.4262	0.3691	0.3302	0.3014	0.2790	0.2610	0.2461	0.233
	T.I.	1.3376	0.8973	0.7189	0.6166	0.5482	0.4985	0.4602	0.4295	0.4043	0.383
5	±2σ	0.7374	0.5214	0.4257	0.3687	0.3298	0.3010	0.2787	0.2607	0.2458	0.233
	T.I.	1.3089	0.8862	0.7125	0.6122	0.5450	0.4959	0.4580	0.4277	0.4027	0.381
6	±2σ	0.7368	0.5210	0.4254	0.3684	0.3295	0.3008	0.2785	0.2605	0.2456	0.233
	T.I.	1.2896	0.8787	0.7082	0.6093	0.5428	0.4941	0.4566	0.4265	0.4016	0.380
7	±2σ	0.7363	0.5207	0.4251	0.3682	0.3293	0.3006	0.2783	0.2603	0.2454	0.232
	T.I.	1.2756	0.8733	0.7051	0.6072	0.5412	0.4929	0.4556	0.4256	0.4009	0.380
8	±2σ	0.7360	0.5204	0.4249	0.3680	0.3291	0.3005	0.2782	0.2602	0.2453	0.232
	т.і.	1.2650	0.8693	0.7028	0.6056	0.5400	0.4920	0.4548	0.4250	0.4003	0.379
9	±2σ	0.7357	0.5202	0.4248	0.3679	0.3290	0.3004	0.2781	0.2601	0.2452	0.232
	т.і.	1.2568	0.8662	0.7010	0.6044	0.5391	0.4912	0.4542	0.4244	0.3999	0.379
10	±2σ	0.7355	0.5201	0.4247	0.3678	0.3289	0.3003	0.2780	0.2601	0.2452	0.232

0.6034

0.5384

1.2501

T.I.

0.8636

0.6995

TOST Analysis Results Summary

Statistic	Value	Pass/Fail
TAE Width (2σ) - Target	±0.600	
Computed TAE Width (2o)	±0.434	Pass
FPT	<0.0001	
Ср	4.4075	
Variance	0.023	
Standard Deviation	0.151	
% RSD	0.15	
% CV	0.15	

Tolerance Interval Analysis Results

Interval Setting	Value	Number of Preparations	Number of Injections per Preparation
Target	100.000	3	1
Acceptance Limits	±2.000		
Desired Probability %	95.00		
Tolerance Alpha %	5.00		
Grand Mean	100.142		
Computed Tolerance Interval	±0.812	Fail	
Required Guard Band Width	±0.600		

Sample Prep Method Optimization

APLM Stage 1 \rightarrow Sample Prep Method Optimization

8

8.80

9.05

Buffer pH

9.30 8.80

9.05

Buffer pH

9.30 8.80

9.05 Buffer pH

Optimization reduces the amount of the TAE contributed by Sample Preparation.

9.30

Replication Strategy for the Reportable Value

Between Variables Components of Variation

Variable Name	Variance	Standard Deviation	Degrees of Freedom	t-table Value	(+/-) 95% Confidence Limits	Error Contribution (%)
Sample Preparation	0.029	0.170	4	2.7764	0.471	96.09
Injection	0.001	0.034	20	2.0860	0.071	3.91

Overall Error in a Single Determination

Statistic	Value
Mean	100.091
Variance	0.030
Standard Deviation	0.173
% RSD	0.173

S-Matrix

	No. of Injections		No. of Preparations									
			1	2	3	4	5	6	7	8	9	10
	4	±2σ	0.4963	0.351	0.2866	0.2482	0.2220	0.2026	0.1876	0.1755	0.1654	0.1570
	2	1.1. ±2σ	0.4915	0.3475	0.2837	0.2457	0.2198	0.2006	0.3250	0.1738	0.2626	0.2666
	_	T.I.	0.9754	0.6296	0.4967	0.4224	0.3736	0.3384	0.3116	0.2902	0.2727	0.2581
	3	±2σ	0.4898	0.3464	0.2828	0.2449	0.2191	0.2000	0.1851	0.1732	0.1633	0.1549
_		т.і.	0.9166	0.6063	0.4831	0.4131	0.3666	0.3329	0.3071	0.2864	0.2694	0.2552
7	4	±2σ	0.4890	0.3458	0.2823	0.2445	0.2187	0.1996	0.1848	0.1729	0.1630	0.1546
		т.і.	0.8860	0.5943	0.4762	0.4084	0.3631	0.3302	0.3048	0.2845	0.2678	0.2537
	5	±2σ	0.4885	0.3454	0.2820	0.2443	0.2185	0.1994	0.1846	0.1727	0.1628	0.1545
		т.і.	0.8672	0.5871	0.4720	0.4056	0.3610	0.3285	0.3035	0.2834	0.2668	0.2528
	6	±2σ	0.4882	0.3452	0.2819	0.2441	0.2183	0.1993	0.1845	0.1726	0.1627	0.1544
		т.і.	0.8545	0.5822	0.4693	0.4037	0.3596	0.3274	0.3026	0.2826	0.2661	0.2522
	7	±2σ	0.4880	0.3450	0.2817	0.2440	0.2182	0.1992	0.1844	0.1725	0.1627	0.1543
		т.і.	0.8453	0.5788	0.4673	0.4024	0.3586	0.3266	0.3019	0.2821	0.2657	0.2518
	8	±2σ	0.4878	0.3449	0.2816	0.2439	0.2181	0.1991	0.1844	0.1725	0.1626	0.1542
		T.I.	0.8384	0.5761	0.4658	0.4014	0.3579	0.3260	0.3014	0.2816	0.2653	0.2515
	9	±2σ	0.4876	0.3448	0.2815	0.2438	0.2181	0.1991	0.1843	0.1724	0.1625	0.1542
		т.і.	0.8330	0.5741	0.4646	0.4006	0.3573	0.3256	0.3010	0.2813	0.2650	0.2513
	10	±2σ	0.4875	0.3447	0.2815	0.2438	0.2180	0.1990	0.1843	0.1724	0.1625	0.1542
		T.I.	0.8286	0.5724	0.4637	0.3999	0.3568	0.3252	0.3007	0.2811	0.2648	0.2511

TOST Analysis Results Summary

Statistic	Value	Pass/Fail
TAE Width (2σ) - Target	±0.600	
Computed TAE Width (2o)	±0.287	Pass
FPT	< 0.0001	
Ср	6.6753	
Variance	0.010	
Standard Deviation	0.100	
% RSD	0.10	
% CV	0.10	

Tolerance Interval Analysis Results

Interval Setting	Value	Number of Preparations	Number of Injections per Preparation
Target	100.000	3	1
Acceptance Limits	±2.000		
Desired Probability %	95.00		
Tolerance Alpha %	5.00		
Grand Mean	100.091		
Computed Tolerance Interval	±0.536	Pass	
Required Guard Band Width	±0.600		

ICH Q14 – Analytical Procedure Lifecycle

S-Matrix. Complete Method Validation Experiment Suite

- Analytical Capability*
- Specificity
- Filter Validation
- Sample Solution Stability
- Accuracy*
- Linearity & Range
- Repeatability*

- Accuracy / Linearity / Repeatability*
 [Combined as per ICH Q2(R1)]
- LOQ*, LOD*
- Intermediate Precision and Reproducibility
- Validation Robustness LC
- Validation Robustness Non-LC

[e.g. Sample Preparation, Dissolution]

Method Transfer Study Support*

integration of USP <1210> Tolerance & Prediction Intervals]

Analytical Method Transfer Example

45

ICH Q14 – Analytical Procedure Lifecycle

Analytical Control Strategy

ICH Q14

Knowledge gained from application of an enhanced approach to analytical procedure development can provide better assurance of the performance of the procedure, can serve as a basis for the analytical procedure control strategy and can provide an opportunity for more efficient regulatory approaches to related post approval changes.

USP <1220>

The [Analytical Control Strategy] is a set of controls needed to ensure the procedure performs as expected and plays a key role in ensuring that the ATP is realized throughout the life cycle. The preliminary ACS is identified during the procedure development process in Stage 1, ...

Analytical Control Strategy (ACS)

ſ	Variable Settings						
l	Enabled	Experiment Variable	Units	Maximum Expected Variation (±3σ Value)			
l		Pump Flow Rate	mL/min	0.020			
l		Oven Temperature	°C	3.0			
l		pH	*	0.15			
I		Mobile Phase Composition (MPC)*	%	2.0			
Ш			·				

* - MPC variation is composition (blend) variation due to pump precision limits. A commonly used $\pm 3\sigma$ value = $\pm 2.0\%$.

The value you enter will be applied to all Gradient Slope factors (e.g., Time, Slope, and Ramp Steps) in the experiment design.

LC System Control Specifications

Analytical Control Strategy (ACS)

	Name	Units	Goal	Lower Bound	Upper Bound	Color	
V	A - ResolutionW50	*	Maximize 💌	2.000		Red	•
V	API - ResolutionW50	*	Maximize 🔻	2.000		Blue 🗖	•
V	D-Deg - ResolutionW50	*	Maximize 🔻	2.000		Green	•
V	E - ResolutionW50	*	Maximize 🔻	2.000		Orange	•
V	B - RetentionTime		Maximize 🔻	1.00		Gray 🗖	•
V	API - USPTailing		Minimize 🔻		1.50	Purple	•
Ľ	B - RetentionTime - Cpk	*	Maximize 💌	1.330		Gray	•
V	API - USPTailing - Cpk	*	Maximize 🔻	1.330		Purple	•
V	A - ResolutionW50 - Cpk	*	Maximize 🔻	1.330		Red 🗖	•
V	API - ResolutionW50 - Cpk	*	Maximize 🔻	1.330		Blue 🗖	•
V	D-Deg - ResolutionW50 - Cpk	*	Maximize 🔻	1.330		Green	•
V	E - ResolutionW50 - Cpk	*	Maximize 💌	1.330		Orange	•

Routine Monitoring – Control Charts

50